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1
Getting started

Computational Fluid Dynamics (CFD) is constantly evolving, and new applications
are found every day that benefit from using CFD. Initially, engineers were the sole
beneficiaries, but CFD has outgrown engineering and is used by non-technical experts
each day.

With the democratisation of CFD, more and more users are looking for resources to
learn CFD. While there are some good books and online resources that explain the
theory, very few attempt to show how to put the theory into code.

When I was a PhD student, I was constantly looking for a place to learn about how
CFD can be implemented into code. There was none. This frustration stuck with me,
especially during my days as a software developer working on a commercial CFD
code.

Eventually, after roaming through books and online resources on CFD, software engi-
neering, and programming, I obtained the knowledge I was after, but it took me years
to get to this point. This is why I have started cfd.university, to share with you this
knowledge and make that accessible to you in a far shorter time frame.

I believe that if you can set up a simulation and obtain results with CFD, you can solve
today’s problems. But, if you canwrite your own CFD solver, you can solve tomorrow’s
problems. We need more people who can write or customise existing CFD solvers to
tackle unsolved challenges and make meaningful contributions.

This is where this guide comes in. If you want to take your CFD knowledge to the
next level and start writing your own CFD solvers, this guide is for you. Once you start
writing your own solvers, you will be well on your way towards CFD mastery.

Even if you have no interest in writing your own solvers in your professional career,
writing at least a simple solver will help you build up an intuition for how numerical
schemes and algorithms work. With that intuition, you can set up simulations with
more confidence.

I really hope this guide and the resources available on cfd.university will help you
to become a CFD expert. When you do, I hope you will use that skill set to make
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meaningful contributions to the challenges we face in engineering and science.

1.1. Setting up a programming environment to develop
CFD codes

Before we start writing code, let’s make sure that your PC or laptop is set up in a way
that allows you to develop code and visualise the results. I have already written an in-
depth article on how to set up a coding environment on Windows, Linux, and macOS,
so if you have no idea of how to get started, you can check out the article linked below:

Resource 1.1 Setting up a programming environment to develop CFD codes

All you need is a text editor to follow this guide. You will also need a C++ compiler to
translate your written code into an executable. That’s it. If you feel comfortable doing
that, you can skip the above article.

Next, you want to make sure that you are comfortable with C++. While it is not the
most user-friendly programming language to get started with, it is the most suitable
language to write CFD solvers. No other language comes even close. Python, Fortran,
Matlab, C, C#, and so on are, at best, a distant second choice. But C++ remains king,
and you will make your life easier by picking up the basics of C++ programming now.

If you want to understand why C++ is the best choice for CFD development, I have a
write-up for this, too. You can find it below:

Resource 1.2 Choosing the right programming language for CFD development

Resource 1.3 Why you should use C++ for CFD development

I will use C++ in this guide, but I have, on purpose, not used any fancy C++ syntax.
I want this guide to be accessible. As a result, my C++ program looks more like a
sequential C program rather than an object-orientated C++ code. For the simple code
that we will develop, any of the more advanced C++ techniques are overkill.

If you have never coded with C++ before, I’d recommend Derek Banas’ YouTube
video C++ Tutorial: C++ Full Course. In one video, Derek goes through all the essen-
tial parts of C++, and it will give you an excellent overview. To get started, you only
need the first 40 minutes, though. You can watch the rest once you feel settled with
C++.

Resource 1.4 C++ Tutorial: C++ Full Course

Once you feel more comfortable with C++ (or perhaps you already know the basics),
I would recommend you to have a look at my series on What every CFD developer
needs to know about C++. It covers all the features of C++ that make our life easier
when writing CFD solvers.

Typical textbook discussions of C++ features use very simplistic code examples, and

https://cfd.university/blog/setting-up-a-programming-environment-to-develop-cfd-codes/
https://cfd.university/learn/what-every-cfd-developer-needs-to-know-about-c/choosing-the-right-programming-language-for-cfd-applications/
https://cfd.university/learn/what-every-cfd-developer-needs-to-know-about-c/why-you-should-use-c-for-cfd-development/
https://youtu.be/6y0bp-mnYU0?si=PhITq4wS0w9RDYL5
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it can be challenging to see how these translate to CFD solvers. This series is bridging
this gap by showing how we can use these advanced features of C++ in the context
of a CFD problem and why they are so important.

Resource 1.5 What every CFD developer needs to know about C++

Now that we have a coding environment, let us look at the basic structure any CFD
solver will follow.

https://cfd.university/learn/what-every-cfd-developer-needs-to-know-about-c/


2
The structure of a CFD solver

In this section, we will look at what is required to write a CFD solver in the first place.
We start by reviewing what I call the generalised CFD solver framework. This is a
pattern I have observed that any CFD solver will follow.

We will then look into the equations we will solve with our CFD solver and finally
review the numerical schemes we will implement. Implementing different schemes
and observing their behaviour is the simplest yet most effective thing you can do to
develop an intuition for Monte CarloCFD (and, by extension, expertise). Let’s jump
straight in:

2.1. The generalised CFD solver framework
I have worked on countless CFD solvers myself, many of which I authored from start to
end as the sole developer. In the process, I realised that writing a CFD solver always
follows a predictable pattern.

I have worked on incompressible and compressible Navier-Stokes solvers, the lattice
Boltzmann method, molecular dynamics, smooth particle hydrodynamics, and the di-
rect simulation Monte Carlo method. I mixed laminar and turbulent flows, used the
finite difference, finite volume, and finite element methods, and worked on small and
large-scale codes (as in millions of lines of code). In each case, the same general
CFD solver framework revealed itself.

Thus, in this section, I will show you this general CFD solver framework, which we will
use to write our own first CFD solver.

The framework is shown in Figure 2.1 which can be separated into 3 main categories:

• Pre-processing: In this step, we prepare the simulation. All operations per-
formed in this step are done once.

• Solving: This is where we obtain the solution. This requires an iterative solution
procedure, and hence, this step is repeated until we reach a converged solution.

• Post-processing: After we have a solution, we process it. This step is also only
ever performed once.

4
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Figure 2.1: The generalised CFD solver framework. It is split into three sections, each with its
subsections. A general CFD solver will go through all of these steps.

We go through each category one after the other (and in the order shown in Figure 2.1).
Within each category, we have several steps that we have to perform.

The pre- and post-processing steps are done only once, while the solving step is
repeated in a time loop (or, if it is a steady-state solution, an interaction loop). This
means most of the computational cost is associated with the solving step.

Going through each category, these are the steps we have to perform:

Pre-processing (once)
1. Read parameters: Each simulation requires some solver settings. This is the

first step in setting up a CFD solver. These can either come from a text input file
or by setting the parameters in a graphical user interface.

2. Allocate memory: Next, we allocate the required memory for all arrays. This
would typically include the solution arrays (pressure, velocity, temperature, etc.),
but it can also include memory allocation for the mesh.

3. Initialise solution: With memory allocated, we initialise the solution for our so-
lution vectors.

4. Create/read mesh: Finally, once the simulation is set up and memory has been
allocated, we proceed with either creating a mesh or reading one. This is the
last step in the pre-processing stage.

Solving (time loop)
1. Preparing solution update: Before we can proceed with the current timestep,

we need to calculate a few things before we can continue. We may want to store



2.2. The governing equations 6

the previous solution in a separate array to calculate the residuals later, or we
may want to calculate a stable timestep if we have a time-dependent flow. All of
these required calculations come at the beginning of the timestep.

2. Solve equations: This is where we solve the governing equations, along with
any additional equations (e.g. turbulence). We also compute the residual as
part of the solution procedure, which we can use to judge convergence.

3. Update boundary conditions: Once the simulation has been advanced in time
or iteration, we need to update the boundary conditions to reflect changes to the
solutions.

4. Custom post-processing: We may want to perform custom post-processing
during each timestep/iteration, like calculating the lift and drag coefficient for
each timestep to obtain a time history. These calculations are performed at the
end of each timestep/iteration.

5. Check convergence: We want to check if the simulation has ended at the end
of each time step (or iteration). Typically, this means checking for convergence
in residuals or integral quantities. If the simulation is unsteady, we may run the
simulation until we have reached the targeted simulation time.

Post-processing (once)
1. Write out simulation data: Once the simulation has completed, we typically

want to write out the solution. This can be as simple as a *.csv file to process in
Excel, Matlab, Python, etc., or more sophisticated by writing out the solution in
a format that a post-processing software like ParaView or Tecplot can read.

2. Deallocate memory: Finally, in languages where we have to allocate and deal-
locate memory ourselves, we should clean up ourselves and free memory again.

This is it. It doesn’t get more complicated than that. There may be cases, however,
where we have to augment the solver framework. For example, when we are deal-
ing with parallel computation, we also need to account for processor synchronisation,
initialisation, and additional clean-up at the end. However, the framework shown in
Figure 2.1 will still be present.

Now that we understand how to write our solver, it is time to review the governing
equations of the CFD solver we will implement.

2.2. The governing equations
In this section, we will introduce the governing equation of our CFD solver. We will
use the Euler equation to write our first CFD solver, which represents an inviscid ap-
proximation of the Navier-Stokes equations.

The Euler and Navier-Stokes equations share many similarities; mainly, they both
retain the non-linear (convective) term, which is responsible for creating shock waves
and turbulence.

If we understand how to write a CFD solver for the Euler equation, we’ll see that going
to Navier-Stokes isn’t much more complicated. Furthermore, high-speed flows are
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mostly inviscid anyway, and only small regions are dominated by viscous forces.

Only if we want to study these small regions do we need to consider viscous forces,
and most of the CFD work in the early 1980s and onwards was performed using the
Euler equation (especially in the aerospace industry).

2.2.1. From Navier-Stokes to the Euler equation
We will start with the compressible form of the momentum equation of the Navier-
Stokes equations. This is given as:

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·

(
µ

[
∇u+ (u)T − 2

3
(∇ · u)I

])
+∇ [ξ(∇ · u)] (2.1)

This equation has several terms, where each term is responsible for different physical
phenomena:

• The term ∂ρu/∂t is responsible for the time-dependence of the Navier-Stokes
equations. It allows for physical phenomena to develop in time, i.e. it is a dy-
namic equation.

• The term ∇ · (ρu ⊗ u) is the convective, or non-linear term, and is responsible
for, let’s say, all the excitement in the Navier-Stokes equations. It produces
shock waves, generates and sustains turbulence, and keeps people like me in
business.

• The term ∇p is the pressure gradient, and it is responsible for inducing flow
where there is a pressure difference between different regions. Think of an open
valve on a bicycle tyre; if the valve is opened, a flow will be induced from the
high-pressure (bicycle tyre) region to the low-pressure (atmospheric) region.

• The term∇·
(
µ
[
∇u+ (u)T − (2/3)(∇ · u)I

])
is responsible for diffusive and mix-

ing processes. For example, if you place a tea bag in hot but non-moving water,
you will see how diffusion will mix the tea in your tea leaves into the water.

• The term ∇ [ξ(∇ · u)] contains the second-viscosity parameter ξ and thus en-
hances the mixing process. For monoatomic gases, we have ξ = 0. For non-
monoatomic gases or liquids, we have ξ ̸= 0.

Thus, if we want to create an inviscid approximation to the above equation, we need
to remove all terms containing µ and ξ. This simplifies our equation considerably, and
we arrive at the following equation, which we call the Euler equation:

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p (2.2)

We can also bring the pressure onto the left-hand side of the equation, which provides
us with the following form:

∂ρu

∂t
+∇ · (ρu⊗ u+ pI) = 0 (2.3)
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The non-linear term containing the so-called dyad product (⊗) can be written as fol-
lows, assuming that the velocity vector is given as u = [u, v, w]T :

ρu⊗ u = ρ

u
v
w

(
u v w

)
=

 ρu2 ρuv ρuw
ρuv ρv2 ρvw
ρuw ρvw ρw2

 (2.4)

Since Eq.(2.4) is a 3x3 tensor, we need to multiply the pressure in Eq.(2.3) by the
identity matrix (I), as we can’t add a tensor and a scalar.

Eq.(2.3) is a vector equation for x, y and z. Thus, we have a total of 3 equations but 5
unknowns (ρ, p, u, v, w). Thus, we need to construct an additional 2 equations so that
we can solve for all unknown quantities.

The first equation we consider is the conservation of mass. This can be written as:

∂ρ

∂t
+∇ · (ρu) = 0 (2.5)

We obtain the density ρ from Eq.(2.5), and thus only need one additional equation for
the pressure. However, there is no conservation law that we can use for the pressure.
Thus, we need to use some form of thermodynamic relation to obtain the pressure.

We start by solving the conservation law for the energy. Different versions are avail-
able, depending on which type of energy we are solving (e.g. total, internal, potential.
kinetic, etc.). We will use the total energy here, which can be decomposed as:

E = internal energy + kinetic energy = ρe+
1

2
ρu2 (2.6)

The conservation law for the total energy is defined as:

∂E

∂t
+∇ · u(E + p) = 0 (2.7)

This equation is valid for an inviscid flow only, which is in line with the inviscid approx-
imation we made in the momentum equation, i.e. Eq.(2.3) where we have dropped
any viscous contributions.

While we now have a total of 5 equations, we are still not able to close the system for
all 6 unknowns. To do that, we need to borrow some thermodynamic relations, which
we will review in the next section.

2.2.2. Thermodynamic relations for the Euler equation
As alluded to above, to solve Eq.(2.3), Eq.(2.5), and Eq.(2.7), we need some thermo-
dynamic relation. Since we obtain u, v, and w from Eq.(2.3), ρ from Eq.(2.5), and E
from Eq.(2.7), we need to find a relation for the pressure p.
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This can be done using an equation of state, where the pressure is related to other
known thermodynamic quantities. For example, the equation of state for an ideal gas
(ideal gas law) relates the pressure p to the density ρ, temperature T , and specific gas
constant R as:

p = ρRT (2.8)

Eq.(2.8) is derived based on the assumption that intermolecular forces can be ne-
glected. This works as long as the pressure is low. At higher pressure, a fluid com-
presses, and molecules are placed closer and closer together. Once they are a few
atomistic diameters apart, intermolecular forces dominate, making the ideal gas law
inaccurate.

Similarly, at low temperatures, fluid particles slow down, and a gas may condense
into a liquid, changing the state of the fluid. At this point, the ideal gas law becomes
invalid. Related to that are high-speed flows, i.e. those where the Mach number is
greater than 5. Here, chemical reactions become important, making the ideal gas law
again inaccurate.

Despite these limitations, the ideal gas law applies to a wide range of applications and
is still widely used these days, despite more sophisticated equations of states being
available, such as the Van der Waals, Redlich-Kwong, or Peng-Robinson equation of
state. We will use the ideal gas law to relate the pressure p to the total energy E in
our CFD solver.

We need a few additional thermodynamic relations before we can relate p to E. The
first is for internal energy, which can be calculated as:

e = cvT (2.9)

Here, cv is the specific heat capacity at constant volume and T the temperature. We
can also define the specific heat capacity at constant pressure, which is called cp. It
is related to cv for an ideal gas by:

cp − cv = R (2.10)

Here, R again, is the specific gas constant. For an ideal gas, we can define the ratio
of specific heats as:

γ =
cp
cv

(2.11)

Dividing Eq.(2.10) by cv, we obtain:

γ − 1 =
R

cv
(2.12)
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Or, multiplying Eq.(2.12) by cv, we obtain:

cv(γ − 1) = R (2.13)

We now have all the ingredients to relate the pressure p to the total energy E. First,
we solve Eq.(2.8) for T and put it into Eq.(2.9). This results in:

e = cvT = cv
p

ρR
(2.14)

Next, we insert Eq.(2.13) into Eq.(2.14). This results in:

e = cv
p

ρcv(γ − 1)
(2.15)

Both values for cv cancel out in Eq.(2.15), so we can rewrite this equation as:

ρe =
p

γ − 1
(2.16)

We can insert Eq.(2.16) into Eq.(2.6) and obtain:

E = ρe+
1

2
ρu2 =

p

(γ − 1)
+

1

2
ρu2 (2.17)

This equation can now be solved for the pressure, which results in:

p = (γ − 1)

[
E − 1

2
ρu2

]
(2.18)

2.2.3. Scalar form of the Euler equation
Thus far, we have looked at the conservation of momentum (Eq.(2.3)), conservation of
mass (Eq.(2.5)), and conservation of total energy (Eq.(2.7)) in a compact divergence
form. However, we can’t implement these equations.

To do that, we always need to derive the scalar form first, which shows us how to
discretise our equations. This is what we will look at in this section.

Let’s start with Eq.(2.3), i.e. the conservation of momentum. We already reviewed
how to write out the dyad product in Eq.(2.4), which resulted in a tensor. Furthermore,
we need to know how to write the nabla operator. This is defined differently for different
coordinate systems, but typically, we use Cartesian coordinates for which we have:

∇ =

(
∂

∂x

∂

∂y

∂

∂z

)T

(2.19)

We can now use Eq.(2.4) and Eq.(2.19) to rewrite Eq.(2.3) as:
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∂

∂t
ρ

u
v
w

+

 ∂
∂x
∂
∂y
∂
∂z

 ·

ρ

u
v
w

(
u v w

)
+ p

1 0 0
0 1 0
0 0 1

 = 0 (2.20)

Carrying out the multiplication and addition for the last term in brackets results in:

∂

∂t
ρ

u
v
w

+

 ∂
∂x
∂
∂y
∂
∂z

 ·

ρu2 + p ρuv ρuw
ρuv ρv2 + p ρvw
ρuw ρvw ρw2 + p

 = 0 (2.21)

From this, we can now derive the scalar form of the Euler equation in three-dimensional
space as:

∂ρu

∂t
+

∂ρu2 + p

∂x
+

∂ρuv

∂y
+

∂ρuw

∂z
= 0 (2.22)

∂ρv

∂t
+

∂ρuv

∂x
+

∂ρv2 + p

∂y
+

∂ρvw

∂z
= 0 (2.23)

∂ρw

∂t
+

∂ρuw

∂x
+

∂ρvw

∂y
+

∂ρw2 + p

∂z
= 0 (2.24)

For the conservation of mass, i.e. Eq.(2.5), we get:

∂ρ

∂t
+

 ∂
∂x
∂
∂y
∂
∂z

 ·

ρu
ρv
ρw

 = 0 (2.25)

Carrying out the scalar (dot) product, we obtain the final form of the conservation of
mass equation as:

∂ρ

∂t
+

∂ρu

∂x
+

∂ρv

∂y
+

∂ρw

∂z
= 0 (2.26)

We proceed similarly for the conservation of total energy, i.e. Eq.(2.7). This can be
written as:

∂E

∂t
+

 ∂
∂x
∂
∂y
∂
∂z

 ·

u
v
w

 (E + p) = 0 (2.27)

Carrying out the scalar (dot) product, just as we did before, we obtain the final scalar
form of the conservation of total energy equation as:

∂E

∂t
+

∂u(E + p)

∂x
+

∂v(E + p)

∂y
+

∂w(E + p)

∂z
= 0 (2.28)
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At this point, we can make one simplification. Since we are only interested in a one-
dimensional flow, we can ignore any terms that contain a derivative in the y and z
directions. Equally, any term containing the v and w velocity component can be ig-
nored. Thus, we end up with the following final system of equations to solve the
inviscid Navier-Stokes (Euler) equations:

• Conservation of mass:

∂ρ

∂t
+

∂ρu

∂x
= 0 (2.29)

• Conservation of momentum:

∂ρu

∂t
+

∂ρu2 + p

∂x
= 0 (2.30)

• Conservation of total energy:

∂E

∂t
+

∂u(E + p)

∂x
= 0 (2.31)

• Equation of state for an ideal gas:

p = (γ − 1)

[
E − 1

2
ρu2

]
(2.32)

This system is typically written in a vector form, which lends itself to easy implemen-
tation into code. It is given as:

∂U

∂t
+

∂F(U)

∂x
= 0 (2.33)

Here, we have defined the vector of conserved quantities U as:

U =

 ρ
ρu
E

 (2.34)

The fluxes F(U), on the other hand, are written as:

F(U) =

 ρu
ρu2 + p
u(E + p)

 (2.35)
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2.2.4. Discretising the Euler equation using the finite volume method
Now that we have found a scalar form of the system of equations we want to solve,
i.e. Eqs.(2.29)–(2.31), we have to decide how we want to transform the system into
algebraic equations. This is done by the discretisation process.

There are three main discretisation approaches that can be used in CFD. These are:

• The finite difference method (FDM)
• The finite volume method (FVM)
• The finite element method (FEM)

The finite difference method (FDM) was historically the first method we used for CFD
applications. It takes the derivatives in our partial differential equations and replaces
these with approximations of the derivatives. We use Taylor-Series expansions here.
It is the most straightforward method to implement, but it is limited to structured grids,
and it does not cope well with shock waves (discontinuities), for which derivatives are
infinite!

The finite volumemethod (FVM) reformulates the differential equations into an integral
form. This avoids the issues of not being able to resolve discontinuities faithfully. Fur-
thermore, we can also use unstructured grids. Therefore, the finite volume method is
the de facto standard discretisation method used in CFD. Most, if not all, CFD solvers
you will ever come across (commercial and open-source) are based on this method.

Finally, we have the finite element method (FEM). It is mainly used in structural me-
chanics, but some CFD solvers are based on it as well. It uses test functions within a
cell to reconstruct the solution locally. This allows us to reconstruct the solution with
an arbitrary accuracy (it is a local user-defined property), which makes it very lucrative.
It has gained popularity in CFD through the discontinuous Galerkin method (DG), but
it remains primarily a research tool. I can only think of two commercial CFD solvers
that use either FEM or DG as a discretisation procedure.

We will use the finite volume method here, as this is in line with most of the literature
that you will come across. It strikes a nice balance between mathematical complexity
(not being too complex like FEM or DG) and computational flexibility (not being too
restrictive in terms of accuracy and the grids we can use, as in FDM).

The finite volume method first of all starts by dividing a computational domain into so-
called finite volumes. Finite volumes are nothing else than the computational cells a
mesh generator would provide us. We assume that each variable we are solving for
(e.g. velocity, pressure, temperature, density, etc.) stays constant within each finite
volume (cell).

We then go about calculating the fluxes that go through the faces. For example, for
the continuity equation (conservation of mass, i.e. Eq.(2.29)), we can see that the flux
is defined as ρu (see flux definition in Eq.(2.35)). Similarly, we can define fluxes in the
momentum and energy equation as ρu2 + p and u(E + p), respectively.

We compute the flux that goes through faces between finite volumes (cells). However,
the variables are typically stored at the centre (centroid) of the finite volume (cell).
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Thus, we need to interpolate the values from the cells’ centroids to the cells’ faces.
This process requires a numerical scheme, and we will review common options in
section 2.3, which are then implemented in section 3.3.2.

So let’s do that with Eq.(2.33). First, we need to integrate the terms over a finite
volume V . This results in:

∫
V

∂U

∂t
dV +

∫
V

∂F(U)

∂x
dV = 0 (2.36)

We then apply the Gauss (or divergence) theorem to the second term in Eq.(2.36).
This transforms the volume integral into a surface integral, removing the derivative.
It may not seem clear why we do that, but suffice it to say at this point that this will
conserve mass, momentum, and energy, while a volume integral won’t.

The resulting equation becomes:

∫
V

∂U

∂t
dV +

∫
A

n⃗ · F(U)dA = 0 (2.37)

We can now carry out the integration. While the quantities defined inUmost certainly
change in space, we make one simplification here. We say that within each cell, all
quantities are constant. And, if they are constant, we can take it out of the volume
integration in Eq.(2.37). This results in:

∂U

∂t

∫
V

dV +

∫
A

n⃗ · F(U)dA = 0 (2.38)

The first term simplifies, but the second term remains the same, as the fluxes at the
faces will be different. This is something we will see shortly. This simplification is one
assumption we make in the finite volume method. If the values are constant, we only
need a single integration point per cell.

If we wanted to allow more than one integration point, and thus a solution which
changes within a cell, then we need to use the finite element method, which allows for
an arbitrary number of points per cell and face.

Returning back to Eq.(2.38), this equation can now be integrated into the following
form:

∂U

∂t
V +

nFaces∑
face=0

n⃗ · F(U)faceAface = 0 (2.39)

The first term is simply the volume integral, which produces the volume of the cell.
The second term, however, was a surface integral. Thus, we need to integrate over
each face of the cell separately.
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Figure 2.2: 1D finite volume discretisation for a domain spanning from x = 0 to x = L using 6 grid
points, two of which are located on the left (BL) and right (BR) boundaries.

To see how this term comes about, consider Figure 2.2. Here, we are looking at a
simple 1Dmesh with 6 points. The left and right points are the left and right boundaries,
denoted by BL and BR, respectively. The domain starts at x = 0 and goes to x = L.

We can pick any of the points we want, for example, point 3 (shown in red), and find
its neighbouring points using a local index i. For example, its neighbour to the left can
be found with the index i− 1 (point 2), and its neighbour to the right can be found with
i+ 1 (point 4).

Even though this is a 1D domain, the finite volume method assumes, as the name
suggests, a 3D domain. However, we can always approximate a 3D domain with a
1D mesh by assuming that we have some finite extent in the top and bottom, as well
as front and back direction (in other words, we assume the flow only changes in one
direction, so we don’t consider the other two directions).

Shown in Figure 2.2 , the finite volumes (cells) are in dashed lines. Granted, these
are only 2D cells, but imagine these cells stretch to the front and back, then we would
have a 3D mesh.

OK, so let’s return to Eq.(2.39). We said that we need to integrate over all surfaces of
the cell (finite volume). If we pick cell 3 in Figure 2.2, we can see its surfaces located
at i+ 1/2 and i− 1/2, i.e. at the dashed lines where two cells meet.

In Eq.(2.39), we have nFaces = 2, i.e. at i+1/2 and i−1/2. We also have the normal
vector n⃗, which always points out of the cell. Thus, if x is going from the left to the
right, we have n⃗ = 1 at i + 1/2 (pointing along the x direction) and n⃗ = −1 at i − 1/2
(pointing against the x direction).

Furthermore, the terms F(U)face andAface will be evaluated at i+1/2 and i−1/2. With
this information at hand, we can carry out the summation and arrive at the following
form:

∂U

∂t
V +

(
F(U)i+ 1

2
Ai+ 1

2
− F(U)i− 1

2
Ai− 1

2

)
= 0 (2.40)

Since we are considering a 1D domain, we can see from Figure 2.2 that the surface
area in the x-direction does not change from cell to cell. We can, therefore, write that
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Ai+ 1
2
= Ai− 1

2
= A, i.e. the surface area is constant. We can take the constant out of

the integration and arrive at:

∂U

∂t
V +

(
F(U)i+ 1

2
− F(U)i− 1

2

)
A = 0 (2.41)

Now, let’s consider the volume and area for a moment. We can see from Figure 2.2
that we have a spacing in the x-direction labelled as ∆x. We also said that we have
a constant but arbitrary value in the top and bottom direction (e.g. y-direction), and in
the front and back direction (e.g. z-direction).

Thus, if we say that the spacing in the y-direction is set arbitrarily at∆y = 1, and similar
in the z-direction to ∆z = 1, then we can say that the surface area is A = ∆y∆z and
the volume is V = ∆x∆y∆z. Of course, if we had a 3D solver, we could calculate the
real values for ∆y and ∆z from the grid (we only set it here because of the 1D nature
of the solver).

Inserting the definitions for A and V into Eq.2.41 results in:

∂U

∂t
∆x∆y∆z +

(
F(U)i+ 1

2
− F(U)i− 1

2

)
∆y∆z = 0 (2.42)

Now, we divide by ∆x∆y∆z, i.e. the volume, to arrive at:

∂U

∂t
+

1

∆x

(
F(U)i+ 1

2
− F(U)i− 1

2

)
= 0 (2.43)

Eq.(2.43) represents the final, finite volume discretised form of our system of equations
shown in Eq.(2.33). This is the one we implement into our CFD solver. Let’s see what
this equation will look like.

First, we substitute the vector quantities U and F(U) into Eq.(2.43) to arrive at:

∂

∂t

 ρ
ρu
E

+
1

∆x


 ρu

ρu2 + p
u(E + p)


i+ 1

2

−

 ρu
ρu2 + p
u(E + p)


i− 1

2

 = 0 (2.44)

From Eq.(2.44), we can then re-write our system of equations as:

• Conservation of mass:

∂ρ

∂t
+

1

∆x

[
(ρu)i+ 1

2
− (ρu)i− 1

2

]
= 0 (2.45)

• Conservation of momentum:

∂ρu

∂t
+

1

∆x

[
(ρu2 + p)i+ 1

2
− (ρu2 + p)i− 1

2

]
= 0 (2.46)
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• Conservation of total energy:

∂E

∂t
+

1

∆x

[
(u(E + p))i+ 1

2
− (u(E + p))i− 1

2

]
= 0 (2.47)

We need to find a suitable approximation for our time derivative ∂/∂t, as well as a way
to obtain fluxes at the faces, i.e. at i + 1/2 and i − 1/2. We will find approximations
for them in section 2.3.

2.2.5. Obtaining primitive variables
Let’s review the vector of conserved variablesU and fluxesF(U). We defined these in
Eq.(2.34) and Eq.(2.35), respectively. These are given below again for convenience:

U =

 ρ
ρu
E

 F(U) =

 ρu
ρu2 + p
u(E + p)


We have the values of U available at each cell i, and we have to use this vector to
compute the fluxes at faces i+1/2 and i−1/2. If we inspect the flux vector above, we
note that we need the velocity u, the density ρ, the pressure p, and the total energy E.

We need to establish a mechanism to obtain the primitive variables (which are u, ρ, p,
and E) from the conserved variables (which are ρ, ρu, and E).

Obtaining the density is trivial, as this is the first component of the conserved quantity
vector U. We can write this explicitly as:

ρ = U(1) = ρ (2.48)

Obtaining the velocity u is also rather straightforward by dividing the second compo-
nent with the first. I.e. we have:

u =
U(2)

U(1)
=

ρu

ρ
= u (2.49)

The total energy can also be obtained directly from the conserved quantities. This is
done using the following relationship:

E = U(3) = E (2.50)

The pressure p is more complicated, but we already reviewed how to get this from
thermodynamic relations in Section 2.2.2, specifically, Eq.(2.18). For convenience,
the equation is repeated below again:

p = (γ − 1)

[
U(3)− 1

2
ρu2

]
= (γ − 1)

[
E − 1

2
ρu2

]
(2.51)
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With these values obtained, we can now compute the fluxes at i + 1/2 and i − 1/2
defined by Eq.(2.35) and use them in Eq.(2.44).

2.3. Numerical schemes
Much of the simulation will be spent on approximating quantities to solve our governing
equation. For compressible flows in particular, numerical schemes play a crucial role
and can make the difference between convergence and divergence of the simulation.

In this section, we will first review how we can approximate solutions at the faces of
our cells (this is either called the interpolation or reconstruction step). We use these
reconstructed variables to compute fluxes across the faces, i.e. the fluxes at i + 1/2
and i− 1/2 as seen in Eq.(2.44).

We will see that we end up with two separate approximations for the fluxes on our
faces, and we use an approximate Riemann solver to consolidate these two fluxes
into a single value.

The fluxes obtained from the Riemann problem are then used in our governing equa-
tion to update the solution in time. At the end of this section, we will review a common
technique to integrate our simulation in time.

2.3.1. Numerical approximation in space
In this section, we look at spatial numerical schemes that we can use to find approx-
imations to F(U)i± 1

2
in Eq.(2.44). We will look at two common choices and see how

they compare against one another later when we run the code.

2.3.1.1. Piecewise constant reconstruction (1st-order)
The piecewise constant reconstruction is the simplest numerical scheme we can use.
It is dead simple to implement and usually a good idea to ensure things are working
as expected. Once we have the first working version of our solver available, we may
want to implement a more accurate scheme as for example shown in the next section.

The piecewise constant scheme is simply copying values that are stored at the cells’
centroid to the faces’ centroid. In other words, we assume that the quantities within a
cell do not change. This may seem like a reasonable approximation at first, especially
if our cells are made smaller and smaller. However, in the presence of strong non-
linear effects, such as shock waves, this leads to an overly diffusive approximation
and excessive numerical dissipation.

We won’t go into much detail about numerical dissipation here, but if you want to learn
more about it, I have written about it previously, and you may want to check out the
article linked below:

Resource 2.1 What is numerical dissipation in CFD and why do we need it?

We can formally define the piecewise constant scheme as:

https://cfd.university/blog/what-is-numerical-dissipation-in-cfd-and-why-do-we-need-it/
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Figure 2.3: Piecewise constant reconstruction for the function shown in orange.

ϕL
i+ 1

2
= ϕi

ϕR
i− 1

2
= ϕi (2.52)

Let’s see how this scheme works graphically. For this, let us look at Figure 2.3, where
we have three cells on which we want to approximate the values of ϕ, which are given
by the orange line.

The finite volume method assumes that we average the function values within each
cell and only store this average at the cell centroid. This is indicated by the black solid
lines.

The piecewise constant reconstruction now says that we take this constant value
within each cell and copy that to the left and right face.

Let’s look at the face at i + 1/2 closely. If we approximate ϕi+1/2 from cell i, then
we get some approximation that we denote by ϕL

i+1/2, i.e. we say it is a left-sided
reconstruction (left as in the left-hand side of the face). We can also obtain a right-
sided reconstruction by starting in cell i + 1. Now, we obtain ϕR

i+1/2, and we can see
from the figure that ϕL

i+1/2 ̸= ϕR
i+1/2!

Is this a problem for us? Not quite. Godunov realised that this poses essentially a Rie-
mann problem, and he postulated that we should use a Riemann solver to consolidate
both the left-sided and right-sided reconstruction into a single value ϕ̃i+1/2.

This is a very influential concept in the field of CFD and if we employ a Riemann
solver in our solution, then we are using the so-called Godunov method. Because of
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its importance, We will review the Riemann problem in Section 2.3.3 in more detail
and look at one such Riemann solver in Section 2.3.3.1.

2.3.1.2. MUSCL scheme (2nd-order)
The piecewise constant approximation is great to get started, but we will also see
later that it is really diffusive and thus not very accurate for capturing strong non-linear
phenomena such as shock waves. As a result, researchers developed numerical
schemes that were able to capture these non-linear behaviour with greater accuracy.

In the context of compressible flows with strong shock waves, two main schemes are
used nowadays.

• The Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) by
Van Leer

• The Weighted Essentially Non-oscillatory (WENO) scheme by Liu, Osher, and
Chan.

Both of these schemes offer the reconstruction of high-resolution schemes, that is,
they provide a higher-order accuracy while ensuring that strong non-linear effects such
as shock waves do not introduce unwanted side effects (oscillations in the solution).

WENO schemes achieve this by constructing different approximations for ϕL,R
i+1/2, which

are then combined using different weights. The weights are calculated based on the
smoothness of the solution, i.e. if strong shock waves are present, then the weights
will be adjusted so that any non-physical effects are suppressed.

MUSCL schemes, on the other hand, reconstruct values for ϕL,R
i+1/2 using only a single

polynomial. Instead of weighing different polynomials, van Leer introduced a limiter to
avoid non-physical oscillations. We will review the role of the limiter in Section 2.3.2
in more detail.

Both schemes can be formulated for higher orders of numerical accuracy and achieve
similar results. The MUSCL scheme, though, is computationally easier to implement
and understand and thus used in this section to give you a gentle introduction to high-
resolution schemes.

However, if you are interested in implementing the WENO scheme as well, I provide
some guidelines on how to achieve that in Section 5.3. A great review of WENO
schemes can be found in the article linked below:

Resource 2.2 Scholarpedia - WENO methods

In the second-order version of the MUSCL scheme, the values for ϕL,R
i+1/2 are recon-

structed using the following equations:

http://www.scholarpedia.org/article/WENO_methods
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Figure 2.4: MUSCL reconstruction for the function shown in orange.

ϕL
i+1/2 = ϕi +

Ψ(ri+ 1
2
)

2
(ϕi − ϕi−1)

ϕR
i−1/2 = ϕi −

Ψ(ri− 1
2
)

2
(ϕi+1 − ϕi) (2.53)

Here, Ψ(ri± 1
2
) is the TVD limiter discussed in the next section and ri± 1

2
is the smooth-

ness indicator of ϕ. For the moment, we will assume that the value of Ψ(ri± 1
2
) is going

to be 1. In the next section, we will look at cases when that may not be true anymore.

Similar to the piecewise constant reconstruction, let us review how theMUSCL scheme
works graphically. For this, have a look at Figure 2.4.

We are approximating here the same function shown in orange as we saw previously
for the piecewise constant reconstruction; see Figure 2.3. As the MUSCL scheme is
a bit more involved, we only look at how ϕL

i+1/2 is calculated, to keep the figure clean.

First, we must calculate the slope between ϕi and ϕi−1 according to Eq.(2.53). This
is shown by the dashed black line in Figure 2.4. Then, we multiply this slope by 0.5,
which is shown by the dotted black line.

Then, starting at ϕi (first term in the approximation of ϕL
i+1/2 in Eq.(2.53)) and moving

along the slope to the face on the right, we obtain the left-sided interpolation of the
face, i.e. ϕL

i+1/2.

We can see that this is closer to the orange function than the piecewise constant
reconstruction. If we used a higher-order polynomial in the MUSCL scheme, we would
likely get even closer to the orange function.

2.3.2. Flux limiters
In Eq.(2.53), we saw the flux limiter Ψ(r±1/2) and said that this is responsible for pro-
viding a smooth approximation for our face reconstructed values. In a mathematical
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Figure 2.5: Example of how a square profile on the left is approximate by the Lax-Wendroff and
Beam-Warming method shown on the right. Reproduced from Winnicki et al. (2019).

sense, flux limiters ensure that our approximation is TVD (total variation diminishing).

A numerical scheme can either be TVD or non-TVD. Though, in CFD, we prefer to use
TVD schemes as these suppress non-physical oscillations. Take the simple solution
of a square profile in Figure 2.5.

We see the initial profile on the left of the figure. If we apply the Lax-Wendroff or
Beam-Warmingmethod (two classical numerical schemes used before high-resolution
schemes, i.e. MUSCL and WENO) to approximate its evolution over time, we obtain
the solution shown on the right. We see some non-physical oscillations near the dis-
continuities.

Imagine the profile we see is that of the density. Then, we see that the oscillations
near the discontinuities can go below zero. A negative density violates the laws of
physics, and thus, this would introduce non-physical results.

The role of a TVD limiter, thus, is to identify these non-physical oscillations, mainly
due to strong shock waves (e.g. discontinuities) and then remove them from the sim-
ulation.

To do that, the TVD limiter requires the smoothness indicator as an input. It is calcu-
lated as:

ri+ 1
2
=

ϕi+1 − ϕi

ϕi − ϕi−1

ri− 1
2
=

ϕi − ϕi−1

ϕi+1 − ϕi

(2.54)

The smoothness indicator provides us with a numerical evaluation of the smoothness
of the solution. Consider the three scenarios presented in Figure 2.6.

https://onlinelibrary.wiley.com/doi/full/10.1002/num.22412
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Figure 2.6: Three possible scenarios for smooth and non-smooth solutions.

For the first case (left side of the figure), we have a smooth solution in space, and if
we plug in values to compute ri+1/2, we see that we obtain a value of ri+1/2 = 1.0.

The second case (middle of the figure) shows a developing shock wave. In this case,
if we plug in numbers, we get a smoothness indicator ri+1/2 = 8.0. If the shock wave
(discontinuity) grows stronger (larger differences between the top and bottom limit of
ϕ, i.e. 0.25 ≥ ϕ ≥ 2.5 in this case), then we get a larger value for the smoothness
indicator.

The third case (right side of the figure) shows an extreme case of no change in the so-
lution. You and me may say that this solution is smooth, but if we ask the smoothness
indicator, it will give us a result of ri+1/2 = NaN (not a number). This is because we
have a division by zero in the denominator of Eq.(2.54), as both ϕi and ϕi−1 have the
same numerical value. To avoid this, we typically modify the smoothness indicator in
the following way:

ri+ 1
2
=

ϕi+1 − ϕi

ϕi − ϕi−1 + ϵ

ri− 1
2
=

ϕi − ϕi−1

ϕi+1 − ϕi + ϵ
(2.55)

Here, ϵ is a small number close to zero that we are free to choose. A typical value for
ϵ is 10−8. Returning back to Figure 2.6, Eq.(2.55) would now provide us with a value
of ri+1/2 = 108.

It is a rather large value, but it is no longer a NaN value, and it will be passed through
the limiter functionΨ(r) , which will provide an upper bound.

So, let’s look at what bounds the limiter will impose. Sweby showed that there is a
general region for Ψ(r) in which it is said to be TVD based on its smoothness indicator
r. This is shown in Figure 2.7 on the left-hand side.

To make the limiter itself 2nd-order accurate, it is further restricted to the region shown
on the right of Figure 2.7. So the job of the limiter Ψ(r) is to return a value that is within
the grey-shaded region in Figure 2.7, regardless of the value of r.

This is not a particularly difficult problem, and a myriad of functions can be thought of
(and have! Just have a look at the list on Wikipedia, which isn’t even complete and
shows just the most popular ones).

https://en.wikipedia.org/wiki/Flux_limiter#Limiter_functions
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Figure 2.7: General Sweby diagram (left) and 2nd-order Sweby diagram (right).

Figure 2.8: Examples of the minmod and van Leer limiter, which both pass through the 2nd-order
shaded region.

I’m sure you could come up with your own limiter function. Go ahead and try it if you
want (you can later extend the solver we will develop in Chapter 3 and check if your
limiter does indeed work).

In the next two sections, we will look at two common limiters you may find in the wild
and see how they are implemented, which are the minmod limiter (Section 2.3.2.1)
and the van Leer limiter (Section 2.3.2.2). Both of these are shown in Figure 2.8.

At this point, I should point out that there is no consensus on which limiter is the best or
worst. As is so often the case in CFD (e.g. selection of numerical schemes, turbulence
model, boundary conditions, etc.), we have a wealth of them available, and some of
them work better than others for certain situations. It is up to us to perform tests and
determine which is best suited for the problem we are trying to solve.

2.3.2.1. Minmod limiter
As we can see from Figure 2.8, the minmod limiter traces the lower part of the 2nd-
order TVD region. It is a common choice that works rather well, but it also has a
discontinuity at r = 1. Quite a few limiters have a similar discontinuity, which can
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sometimes affect convergence.

The minmod limiter is defined as:

Ψ(r)minmod = max[0,min(1, r)] (2.56)

2.3.2.2. Van Leer limiter
To avoid the discontinuity in the function definition, we may want to use a smooth
profile instead. One such limiter is due to van Leer, which we can see in Figure 2.8.
This function is defined as:

Ψ(r)vanLeer =
r + |r|
1 + |r|

(2.57)

We can see that as r tends to infinity, Eq.(2.57) approaches a value of 2, thus staying
within the 2nd-order TVD region.

2.3.3. The Riemann problem and approximate Riemann solvers
The Riemann problem is a very important concept in CFD. Compressible flows with
strong discontinuities (shock waves) are virtually impossible to resolve well without
solving the Riemann problem. OpenFOAM, for example, is famous for disregarding
the Riemann problem altogether (in most solvers), and it is known for producing poor
results for compressible flows (which even the OpenFOAM developers have admit-
ted).

The Riemann problem, in its most basic form, is rather straightforward. We require a
hyperbolic conservation law (i.e. the Euler equations in our case) with a discontinuous
initial solution. Let’s unpack this statement a bit.

We saw the conservation of mass (Eq.(2.5)), momentum (Eq.(2.3)), and total energy
(Eq.(2.7)). As long as the system of equations has real and distinct eigenvalues, it is
said to be hyperbolic.

In a more physical sense, real and distinct eigenvalues mean that we have different
wave speeds within our system. In the case of the Euler equations, we obtain three
distinct eigenvalues corresponding to the characteristic wave speed of a shock wave,
a contact discontinuity, and rarefaction waves.

When we later run our code, we can see these different wave speeds by animating
through our solution. Each wave will expand at its own speed, which corresponds to
one of the eigenvalues of the system.

The discontinuous initial data can be written mathematically as:

U(x, t = 0) =

{
UL x < x0

UR x ≥ x0

(2.58)



2.3. Numerical schemes 26

Figure 2.9: Discontinuous initial data according to the Riemann problem.

This can also be shown visually, as shown in Figure 2.9. Thus, as long as there is
a discontinuity somewhere in the initial data, and we have a hyperbolic conservation
law (or system of conservation laws, i.e. conservation of mass, momentum, and total
energy), we have a Riemann problem.

Each problem requires a solution, and this is where Riemann solvers come in. A
Riemann solver simply looks at the left and right states (i.e. UL and UR in Eq.(2.58)
and in Figure 2.9), and aims to consolidate these into a single state Ũ.

More specifically, in the case of conservation laws, we first approximate the left-sided
and right-sided states of U using an appropriate reconstruction scheme (e.g. the
piecewise constant scheme (Section 2.3.1.1) or theMUSCL scheme (Section 2.3.1.2)),
and then compute the fluxes based on these reconstructed states. The Riemann
solver will then consolidate these fluxes into a single flux.

In a mathematical sense, we can write the solution of a Riemann solver as:

F̃(U)i+ 1
2
= f [F(UL

i+ 1
2
),F(UR

i+ 1
2
)] (2.59)

If we return to Figure 2.3 for a second, where we looked at the piecewise constant
reconstructed states, we saw that the left-sided and right-sided approximations ϕwere
rather far apart. The Riemann solver now tries to correct these predictions so as to
bring the solution closer to the actual solution (here, shown by the orange curve).

There are several different Riemann solvers out there with varying degrees of com-
plexity. In my opinion, the Rusanov Riemann solver (also sometimes referred to as
the local Lax-Friedrichs flux) is a fairly robust and useful Riemann solver that is easy
to implement and understand. We will review this in the next section.

2.3.3.1. The Rusanov Riemann solver
As alluded to above, the Rusanov (local Lax-Friedrichs) Riemann solver is straightfor-
ward and easy to implement. It contains only two steps:

1. Obtain a suitable, characteristic wave speed.
2. Compute the flux based on the left-sided and right-sided approximations of U.

There is no shortage of wave speed estimations, all more or less following a similar
approach. This typically involves some form of the eigenvalues of the system. A
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common wave speed estimation is the one provided below:

S = max(|uL|+ aL, |uR|+ aR) (2.60)

Here, uL,R are the left-sided and right-sided reconstructed x velocity component and
aL,R is the speed of sound and calculated as:

aL,R =

√
γpL,R
ρL,R

(2.61)

The Rusanov Riemann solver then computes the flux as:

F̃(U)i+ 1
2
=

1

2

[
F(UL

i+ 1
2
) + F(UR

i+ 1
2
)
]
− S

(
UR

i+ 1
2
−UL

i+ 1
2

)
(2.62)

There are two observations we can make at this point. For cases where the wave
speed estimation reaches zero, the second term in Eq.(2.62) becomes negligible. In
this case, only the first term contributes to the flux calculation, in which case we simply
take an average of the left-sided and right-sided fluxes.

Secondly, if we set S = 0.5∆x/∆t, then Eq.(2.62) becomes the Lax-Friedrichs scheme.
Thus, since we compute the wave speed S for each cell in the Rusanov Riemann
solver, it is also sometimes called the local Lax-Friedrichs scheme.

Similar to Eq.(2.62), we can also compute the fluxes for the face at i−1/2, i.e. F̃(U)i− 1
2
.

Once we have obtained these fluxes, we can substitute the fluxes in Eq.(2.43) with
those obtained by Eq.(2.62). This results in:

∂U

∂t
+

1

∆x

(
F̃(U)i+ 1

2
− F̃(U)i− 1

2

)
= 0 (2.63)

A solution to Eq.(2.63) provides a high-resolution approximation to the Euler equation.
The ingredients we have just looked at are essentially the same for any compressible
flow solver (e.g. higher-order reconstructions, flux limiters, and the Riemann problem).

While we now have a good idea of how to approximate the fluxes in Eq.(2.63), we
have not discussed how to approximate the time derivative. We will look at this in the
next section.

2.3.4. Numerical approximation in time
In this section, we will look at a common scheme to advance the solution in time. This
will provide us with an approximation for the time derivative, i.e. ∂U/∂t in Eq.(2.63).

2.3.4.1. Euler scheme (1st-order)
The 1st-order Euler scheme in time is the simplest form of time integration. It assumes
we can replace the time derivative with a first-order approximation based on the Taylor-
Series. Developing a Taylor-series in time around U(t+∆t) results in:
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U(t+∆t) = U(t) +
∂U

∂t
∆t+O(∆t2) (2.64)

Here, we are only concerned with the first two terms in the Taylor-series expansion.
We will see that this is responsible for the first-order accuracy in a second. We can
solve Eq.(2.64) for the time derivative ∂U/∂t to arrive at:

∂U

∂t
∆t = U(t+∆t)−U(t) +O(∆t2) (2.65)

Dividing both sides by ∆t results in:

∂U

∂t
=

U(t+∆t)−U(t)

∆t
+O(∆t) (2.66)

The truncation errorO(∆t)was also divided by∆t, and as a result, the truncation error
was reduced from O(∆t2) to O(∆t). Since the exponent determines the order of the
approximation, we can see that our approximation is now first-order accurate (i.e. the
exponent in O(∆t) = O(∆t1) is 1).

In CFD, we typically introduce subscripts for dealing with time, i.e. Eq.(2.66) can be
rewritten as

∂U

∂t
=

Un+1 −Un

∆t
+O(∆t) (2.67)

Values at t (or time level n) are always known, either from the previous time step or
the initial conditions (if we are just starting with the simulation). Thus, if we insert the
approximation of Eq.(2.67) into Eq.(2.63), we obtain:

Un+1
i −Un

i

∆t
+

1

∆x

(
F̃(U)i+ 1

2
− F̃(U)i− 1

2

)
= 0 (2.68)

We need to make an assumption now. At what time level do we want to approximate
the fluxes, i.e. F̃(U)i±1/2? We have two choices, either at the time level n or at the
time level n+1. The former will lead to an explicit discretisation in time, while the latter
results in an implicit discretisation.

Explicit time integrations are easy to implement, and for the sake of simplicity, this is
what we will do here. We will see why in a second. So let’s introduce this time level
into Eq.(2.68), which results in:

Un+1
i −Un

i

∆t
+

1

∆x

(
F̃(U)n

i+ 1
2
− F̃(U)n

i− 1
2

)
= 0 (2.69)

We can now put all the values of n on the right-hand side of the equation and collect
all terms with n + 1 on the left-hand side of the equation. This provides us with the
following equation:



2.4. Boundary conditions 29

Un+1
i = Un

i −
∆t

∆x

(
F̃(U)n

i+ 1
2
− F̃(U)n

i− 1
2

)
(2.70)

From Eq.(2.70), we can see that there is only a single unknown quantity, i.e. Un+1
i .

Thus, we can directly (explicitly) calculate the solution U at the next step (time level
n+ 1). In contrast, had we assumed the fluxes would be evaluated at time level n+ 1
in Eq.(2.68), we would get:

Un+1
i −Un

i

∆t
+

1

∆x

(
F̃(U)n+1

i+ 1
2

− F̃(U)n+1
i− 1

2

)
= 0 (2.71)

Putting again all unknowns (at time level n + 1) on the left-hand side of the equation
and all terms with n on the right-hand side of the equation, we obtain the following
implicit time discretisation:

1

∆t
Un+1

i +
1

∆x
F̃(U)n+1

i+ 1
2

− 1

∆x
F̃(U)n+1

i− 1
2

=
1

∆t
Un

i (2.72)

We now have several unknowns on the left-hand side of the equation. To solve this,
we would have to insert the reconstruction scheme for each flux, until we have the
fluxes expressed in terms of Ui±1. We will end up with a linear system of equations
that we need to solve.

This is great for stability, but if you are just starting out writing your first solver, it is
a bad idea to jump straight to implicit methods. Furthermore, for certain applications,
implicit methods are not the right choice anyway. Scale-resolved turbulence modelling
is mainly done with explicit schemes as they are faster than implicit schemes, and we
do not need the added stability here (as physical constraints limit us to CFL < 1).

I won’t go into further details here about implicit schemes, but I have written about
them at length on cfd.unversity. If you want to see how to discretise an equation using
an implicit scheme, and how to implement the resulting linear system of equations,
then feel free to check out the article linked below:

Resource 2.3 How to write a CFD library: Discretising the model equation

2.4. Boundary conditions
In this section, I want to give you the essentials to master boundary conditions. There
is a lot more to them than what I can cover here, and I could probably write an entire
guide just about boundary conditions! Honestly, they are rather tricky to get right.

There are only 3 basic types of boundary conditions. These are periodic, Dirichlet,
and Neumann boundary conditions (although you could argue that periodic boundary
conditions are a special case of Dirichlet boundary conditions). If you master these
three types, you can handle any flows.

We will review these three basic types of boundary conditions first and then discuss
how we can combine different variations of them for our conserved variables so that

https://cfd.university/learn/how-to-compile-write-and-use-cfd-libraries-in-c/how-to-write-a-cfd-library-discretising-the-model-equation/
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we can impose boundary conditions such as solid walls, symmetry faces, inflows, and
outflows. We won’t need all of them for our solver, but I have included them here for
completeness.

2.4.1. Periodic boundary conditions
Periodic boundaries are the simplest type of boundary conditions we can think of.
They state that what leaves the domain on one side must enter the domain on the
other side. Have a look at Figure 2.2 again. Here, we can see a domain that has two
boundaries. BL is the boundary on the left and BR on the right.

If we need information to the left of BL, then we simply look to the left of BR. In
Figure 2.2, this means that the next centroid to the left of BL is the cell with ID 5.
Similarly, if we require information to the right of BR, then we simply look to the right
of BL. The next point past BR is the cell with ID 1 in Figure 2.2. We can put this in
equation form as:

ϕBL−1 = ϕBR−1

ϕBR+1 = ϕBL+1 (2.73)

Periodic boundary conditions are particularly useful when we have a domain with re-
peated features, and we want to focus on just one element that is repeated through
the domain (e.g. a single rotor element on a wind turbine).

2.4.2. Dirichlet boundary conditions
Dirichlet boundary conditions require us to impose a value at the boundary. For ex-
ample, at an inlet/inflow boundary, we typically prescribe the velocity vector. Giving
explicit values for the velocity (or, indeed, any other quantity) is a form of a Dirichlet
boundary condition.

Mathematically speaking, and referring back to Figure 2.2 again, we can write Dirichlet
boundary conditions for either end of the domain as:

ϕBL
= ϕA

ϕBR
= ϕB (2.74)

Here, ϕA and ϕB are some values we want to impose at the boundary for ϕ. Thus,
Dirichlet boundary conditions always require us to know the value on the boundary,
and typically, we have a uniform distribution across the boundary as a result, e.g. a
uniform inflow velocity profile.

2.4.3. Neumann boundary conditions
Finally, we have Neumann-type boundary conditions. These are formulated as a gra-
dient of a quantity. Let’s look at the definition first and then develop an intuition for it (if
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you are seeing it for the first time, it likely won’t make sense). The Neumann boundary
condition for the domain in Figure 2.2, is written for either side as:

∂ϕ

∂n

∣∣∣∣
BL

= ϕA

∂ϕ

∂n

∣∣∣∣
BR

= ϕB (2.75)

Here, ϕA and ϕB are, again, some values that we can impose. A fairly common choice
is ϕA = ϕB = 0, i.e. there is no gradient of ϕ across the boundary. The denominator
∂n indicates that this gradient is to be evaluated along the normal direction to the
boundary.

Let’s use temperature as an example. If we have a Neumann-type boundary condition
for the temperature, and we write it as:

∂T

∂n

∣∣∣∣
BL

= 0 (2.76)

In this case, we say that there is no temperature gradient across the boundary. We
use Eq.(2.76) for adiabatic solid walls, for example. Of course, if we wanted to have a
heat flux across the boundary (i.e. we wanted to impose heating on our system), then
we would have:

∂T

∂n

∣∣∣∣
BL

> 0 (2.77)

Here, we allow for some temperature gradient at the boundary, i.e. we allow for heat
to flow over the boundary into our domain.

Ok, so let’s see how we would implement Eq.(2.75). First, we need to discretise
the gradient. For the boundary on the left, i.e. BL, we use a right-sided, first-order
approximation of the gradient and use Figure 2.2 again as a reference. Then, we
obtain the following approximation:

∂ϕ

∂n

∣∣∣∣
BL

≈ ϕ1 − ϕBL

∆x
= ϕA (2.78)

Here, we use a Taylor series again to obtain an approximation for the gradient, as we
did in Section 2.3.4.1. The only difference is that our Taylor series is now in space (i.e.
in terms of x rather than in time t).

We can see that Eq.(2.78) contains the value of ϕBL
. Thus, we can simply solve for it

as follows:
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ϕBL
= ϕ1 − ϕA∆x (2.79)

In case ϕA = 0, Eq.(2.79) further simplifies to:

ϕBL
= ϕ1 (2.80)

We can also repeat the same steps for the Boundary on the right, i.e. BR. In this case,
we have:

∂ϕ

∂n

∣∣∣∣
BR

≈ ϕBR
− ϕ5

∆x
= ϕB (2.81)

This can be solved for ϕBR
as:

ϕBR
= ϕ5 + ϕB∆x (2.82)

If we assume a zero-gradient condition again as in Eq.(2.80), then we can simplify
Eq.(2.82) again to:

ϕBR
= ϕ5 (2.83)

In other words, we look at the values of ϕ at the interior points next to the boundary and
copy them into the boundary points for ϕ. In a sense, a Neumann boundary condition
is a Dirichlet boundary condition, but we don’t know the value we are imposing (rather,
it is calculated from the interior domain).

Another way to look at the Neumann boundary condition is this: If we don’t know what
values to prescribe at a boundary, then we probably want a Neumann-type boundary
condition. Or, if we are interested in quantities on the boundary, then it is also likely a
Neumann boundary condition.

For example, think of a simple simulation of the flow around an airfoil. Typically, we
are interested in the lift and drag of the arifoil. The lift is mainly calculated from the
pressure, and so, since we are interested in the pressure (i.e. it is a solution of our
simulation), it must be a Neumann-type boundary condition. Indeed, the pressure is
usually given as a Neumann-type boundary condition at solid walls.

Another example is the outflow velocity profile within a channel flow. We don’t know the
shape of the velocity profile, and thus, we need to impose the velocity as a Neumann-
type boundary condition. Since we copy the velocity profile from the interior to the
boundary, we essentially look at the computed velocity profile at the points next to the
boundary, which was computed on the interior.
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2.4.4. Common boundary conditions
Hopefully, the discussion in the previous sections clearly demonstrated how to use
periodic, Dirichlet, and Neumann-type boundary conditions. In this section, I want to
build upon that knowledge and show which type we need to use for which variables
to achieve a very specific type of boundary condition.

In the solver we develop in Chapter 3, we’ll impose some form of boundary conditions,
but they are inconsequential for the development of the solution (as we never reach the
boundary). So, you won’t need any of the following discussion on boundary conditions,
but I thought of including them so that you know how you could extend the solver
should you wish to.

2.4.4.1. Solid wall boundary conditions
A solid wall is likely something you will encounter in most applications. Any type of
solid surface will be represented as a solid wall. The only question we need to ask
ourselves is whether it is a viscous or inviscid simulation.

In our case, we deal with inviscid flows, and this means that the flow should simply
flow over a surface but not slow down. Only viscous forces will impose a boundary
layer and thus slow down the flow near a solid surface.

Thus, we can write the boundary conditions for solid walls as follows:

• Inviscid wall:

– Velocity (wall-normal direction): Dirichlet (zero velocity)
– Velocity (wall parallel direction): Neumann (zero gradient)
– Pressure: Neumann (zero gradient)
– Density: Neumann (zero gradient)
– Temperature: Neumann (zero gradient or specified heat flux)
– Energy: Neumann (zero gradient or specified energy flux)

• Viscous wall:

– Velocity (wall-normal direction): Dirichlet (zero velocity)
– Velocity (wall parallel direction): Dirichlet (zero velocity)
– Pressure: Neumann (zero gradient)
– Density: Neumann (zero gradient)
– Temperature: Neumann (zero gradient or specified heat flux)
– Energy: Neumann (zero gradient or specified energy flux)

Thus, the only difference between an inviscid and a viscous wall is how we specify the
velocity in the wall’s parallel direction.

2.4.4.2. Symmetry boundary conditions
A symmetry boundary condition is one where we assume that we have flow on the
other side of the boundary, which is symmetrical to the flow we are solving for. We
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often employ symmetry boundary conditions to reduce the domain size and thus speed
up the simulation.

For example, if we were to simulate the flow through a pipe or channel, we could just
model half of the pipe or channel and impose a symmetry boundary condition at the
centerline of the pipe or channel. This reduces the number of cells in our mesh by a
factor of 2 without losing any accuracy.

A symmetry and inviscid wall are virtually the same, with the exception that all quan-
tities are given as a Neumann boundary condition (apart from the velocity in the wall-
normal direction, which remains a Dirichlet-type boundary condition). In other words,
a symmetry boundary condition is imposed using the following:

• Velocity (wall-normal direction): Dirichlet (zero velocity)
• Velocity (wall parallel direction): Neumann (zero gradient)
• Pressure: Neumann (zero gradient)
• Density: Neumann (zero gradient)
• Temperature: Neumann (zero gradient)
• Energy: Neumann (zero gradient)

2.4.4.3. Inlet boundary conditions
Inlet (as well as outlet boundary conditions, discussed in the next section) are where
things get interesting. You’d think these are simple to impose, but in reality, there are
some nuances which can make life rather difficult.

Luckily for us, these nuances only really start to appear once we deal with turbulence
and scale-resolved turbulence modelling in particular. If we are dealing with inviscid
flows, life is easy again.

For inlet boundary conditions, we first have to determine the inflow Mach number, as
this will determine how many Dirichlet and Neumann boundary conditions we have.
For completeness, the Mach number is calculated as Ma = u/a, where u is the local
velocity and a the local speed of sound. If the Mach number is below 1, then the flow
is said to be subsonic. If the Mach number is above 1, then the flow is said to be
supersonic.

With this definition in mind, we can specify the boundary conditions for an inlet as
follows:

• Supersonic inlet:

– All variables: Dirichlet
• Subsonic inlet:

– All variables apart from one: Dirichlet
– One variable: Neumann

For supersonic inlets, we impose values for velocity, density, pressure, temperature,
and so on at the inlet directly (Dirichlet). However, if the Mach number is below 1 at
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the inlet, then we have to specify Dirichlet boundary conditions for all but one variable.
One of the variable has to be a Neumann-type boundary condition.

Which variable is a Neumann-type boundary condition is up to us to decide. For exam-
ple, if we wanted to specify a certain velocity at the inlet, we would impose the velocity
as a Dirichlet boundary condition and then use a Neumann-type for the pressure or
density. On the other hand, we may want to specify a pressure drop between the
inlet and outlet, in which case we would specify the pressure as Dirichlet boundary
conditions and then use a Neumann type for the velocity.

The choice is ours, and depending on the choice, we end up with either a velocity inlet
or pressure/density inlet boundary condition.

2.4.4.4. Outlet boundary conditions
Outlet boundary conditions are very similar to inlet boundary conditions in that we first
need to establish whether the flow is supersonic or subsonic at the outlet. Based on
the type of flow, we can then impose the following conditions:

• Supersonic outlet:

– All variables: Neuamnn
• Subsonic outlet:

– All variables apart from one: Neumann
– One variable: Dirichlet

If the flow is supersonic, the case is easy. We simply apply Neumann-type boundary
conditions everywhere. If we reach subsonic flows locally, we have to specify one
Dirichlet boundary condition for a variable of our choosing. Typically, we fix the outlet
pressure and set it to an ambient pressure.

However, we could also let the pressure develop and require a specific, fixed value for
the velocity at the outlet. This may make sense if we want to target a specific mass
flow rate (for which we can compute the required velocity at the outlet) from which we
can then determine the pressure drop.

Depending on the type of problem we want to solve, we have to choose between
a Dirichlet or a Neumann-type boundary condition accordingly. There is no right or
wrong answer, and with a bit of practice, you’ll develop an intuition for which type to
use.

But if in doubt, remember what we discussed above. If you are interested in a specific
quantity at the boundary (e.g. the pressure for the calculation of the pressure drop),
you’ll likely need to impose it as a Neumann-type boundary condition.

And with that, you should now have a good basic understanding of how to deal with
boundaries. Remember that we can always bring back any type of boundary condition
to a Dirichlet or a Neumann-type boundary condition (and, in some cases, to a periodic
type boundary condition). Let us now continue our discussion by looking at initial
conditions.
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Figure 2.10: The Sod shock tube problem.

2.5. Initial conditions
Initial conditions are those conditions we set at the beginning of the simulation. Our
simulation will advance the solution in time based on these initial conditions.

Typically, the initial conditions we set are not important, as our simulation will always
converge to our boundary conditions.

However, the case we will look at depends only on the initial conditions since we stop
our simulation early, before any disturbance from the initial profile has reached the
boundary. However, if we run our simulation for long enough, it should always reach
the same solution, regardless of the initial conditions.

The initial condition may also influence the convergence speed, i.e. if we are seeking
a steady-state solution, then an initial condition close to the final solution may provide
faster convergence than any arbitrary initial condition (like setting inflow values for all
interior points).

2.5.1. The Sod shock tube problem
If you are writing your first (compressible) CFD solver, the Sod shock tube problem is
likely the first problem you encounter. It is one of the simplest and most well-known
and well-studied examples out there. It is insensitive to the boundary conditions, and
with relatively little effort (i.e. a 1D inviscid solver is sufficient), we can study complex
non-linear phenomena of the Euler equations.

The Sod shock tube problem is essentially a Riemann problem. Return to Figure 2.9.
Here, we saw that we have two states, i.e. the left and right state. The Sod shock tube
problem is using this as the basis and defines the initial conditions with a discontinuity
for all primitive variables.

Specifically, on a domain of Length L = 1, where we start at x = 0 and go to x = L,
we have the following initial values:
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ρL
pL
uL

 =

1
1
0

 (2.84)

ρR
pR
uR

 =

0.125
0.1
0

 (2.85)

This setup is also shown in Figure 2.10, where we see the initial data for the density
ρ, the pressure p, and the velocity u for the left and right states. We can see that the
discontinuity appears at x = 0.5.

With these initial conditions specified, we now have everything we need to start writing
our solver. Before we do, though, let’s have a quick review of what we just went
through, as it was quite a lot. The next section provides you with a quick summary of
the steps and equations required to solve the 1D Euler equations.

2.6. Step-by-step summary
In this section, I want to condense all of the information we just went through and put
that into a short summary. We review all the steps we need to take and see all of the
key equations again. The steps we need to take are:

1. Define the governing equations. We have settled for the 1D Euler equations.
These were given in discretised form by Eq.(2.44) as:

∂

∂t

 ρ
ρu
E

+
1

∆x


 ρu

ρu2 + p
u(E + p)


i+ 1

2

−

 ρu
ρu2 + p
u(E + p)


i− 1

2

 = 0

2. We see that we need to approximate the values for the flux vector F(U) at the
faces i + 1/2 and i − 1/2. We either use a piecewise constant reconstruction
(Eq.(2.52)) or the MUSCL scheme (Eq.(2.53)). These were given as:

• Piecewise constant reconstruction (Eq.(2.52)):

ϕL
i+ 1

2
= ϕi

ϕR
i− 1

2
= ϕi

• MUSCL scheme (Eq.(2.53)):

ϕL
i+1/2 = ϕi +

Ψ(ri+ 1
2
)

2
(ϕi − ϕi−1)

ϕR
i−1/2 = ϕi −

Ψ(ri− 1
2
)

2
(ϕi+1 − ϕi)
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3. If we are using the MUSCL scheme, we also need to evaluate the flux limiter
Ψ(r). There are countless flux limiters available, and we have reviewed the
minmod (Eq.(2.56)) and the van Leer (Eq.(2.57)) flux limiters. These are given
as:

• Minmod limiter (Eq.(2.56)):

Ψ(r)minmod = max[0,min(1, r)]

• Van Leer limiter (Eq.(2.57)):

Ψ(r)vanLeer =
r + |r|
1 + |r|

• Here, r is the smoothness indicator defined by Eq.(2.55) and given as:

ri+ 1
2
=

ϕi+1 − ϕi

ϕi − ϕi−1 + ϵ

ri− 1
2
=

ϕi − ϕi−1

ϕi+1 − ϕi + ϵ

ϵ is a small number to avoid divisions by zero and set here to ϵ = 10−8.
4. Using either the piecewise constant reconstruction or the MUSCL scheme, we

end up with left-sided and right-sided interpolated values for our variables, i.e.
we obtain ϕL,R

i±1/2. These values are typically not the same, and thus, we need to
consolidate these fluxes into a single flux. This is the job of the Riemann solver,
and we are using the Rusanov (or local Lax-Friedrichs) Riemann solver here, as
given by Eq.(2.62). This is given as:

F̃(U)i+ 1
2
=

1

2

[
F(UL

i+ 1
2
) + F(UR

i+ 1
2
)
]
− S

(
UL

i+ 1
2
−UR

i+ 1
2

)
5. With a single flux for each face in the mesh, we can now update the solution in

time using a first-order Euler time integration scheme. This is given by Eq.(2.70)
as:

Un+1
i = Un

i −
∆t

∆x

(
F̃(U)n

i+ 1
2
− F̃(U)n

i− 1
2

)
Returning back to the generalised CFD solver framework in Figure 2.1, the step-by-
step summary outlined below is what we do in theSolving (time loop) block, specifically
within the Solve equations sub-block.



3
Writing a CFD solver

In the previous chapter, we developed all of the theoretical knowledge we needed to
write our Euler equation-based CFD solver. While the focused discussion of the pre-
vious chapter can be found in many CFD textbooks, what follows typically is omitted.

We will go through each line of code, discuss what it is doing, and link it back to
equations from the previous chapter where applicable. I really hope this section will
provide clarity on how to write a CFD solver, as going from theory to working code is
not always straightforward.

Before we look at the code, I need to address the (conscious) choice I made about the
code structure. The way I have written the code is not how you would actually write a
production-ready CFD solver.

However, I have always found that writing optimised and efficient code is completely
the opposite of what you need when you want to show how something is implemented,
i.e. writing code for education purposes.

Too often have I looked at code that was written to demonstrate a particular algorithm,
only to find that it was full of unnecessary optimisations that made it more difficult to
understand the code.

Thus, I have decided to write the code in the clearest form possible; this includes
putting the entire code into a single main() function and not structuring the code into
smaller functions, potentially split into several header and source files, or using any
advanced C++ features.

You should be able to open the code and read through it like you would read a book.
This isn’t how you would write a C++ application, but this is how you should write a
C++ application for education purposes. I hope this will help translate the theory into
practice.

3.1. The main structure of the code
Before we jump into the implementation of the equations, I want to first introduce the
main structure of the code and get some definitions out of the way. We won’t look at

39
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the entire code all at once but rather at chunks of code, one at a time.

Thus, it helps to have an understanding of the structure of the code first so that we
know where each of the code snippets will go.

3.1.1. Folder structure
Within the code/ directory, you will find three files:

• euler.cpp: This is the main c++ source file. It contains the entire code of the
CFD solver that implements the Euler equations for a 1D, inviscid compressible
flow.

• CMakeLists.txt: This file is used byCMake to build the executable in a platform-
independent way. You will need to have CMake installed to make use of it (which
you should if you followed the resources listed in Chapter 1)

• QuickStartGuide.pdf: This file shows you how to compile the code using
CMake and then how to execute it.

I have debated for a while whether I should include CMake here or not. In the end, I
have decided that if you know how to install a C++ compiler, installing CMake shouldn’t
be that much more complicated (and I have provided a dedicated guide on how to
install everything for Windows, Linux, and macOS in Chapter 1).

In the end, knowing how to use a build system like CMake is just as important as
knowing how to write code itself, especially once your project becomes more complex
and consists of many more files.

I have an entire series on how to use CMake for CFD applications, and if this is the first
time you have heard about CMake, I would recommend having a brief look through
my introductory article on CMake linked below:

Resource 3.1 Introduction to CMake for CFD practitioners

We won’t use any advanced features here, and our CMake file is so trivial that it seems
almost pointless to use it in the first place. I have included it, however, because it gives
you the best chance of quickly compiling your solver regardless of your operating
system.

If you already feel comfortable with a C++ compiler, you can safely ignore CMake and
compile the code directly through the terminal. I won’t stop you!

3.1.2. The main() function
In Listing 1, we can see the main() function of our CFD solver. As discussed at the
beginning of this chapter, we are dealing here only with a single main() function that
contains all code.

I have removed all of the implementations and have only retained the structure of the
code. Where I have removed the code, I have left a comment indicating what is being
implemented here, along with a section reference. In the next sections, we will look

https://cfd.university/learn/automating-cfd-solver-and-library-compilation-using-cmake/introduction-to-cmake-for-cfd-practitioners/
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1 // header include files (Section 3.1.3)
2

3 // enum and struct definitions (Section 3.1.4)
4

5 int main() {
6

7 // pre‐processing (Section 3.2)
8

9 while (parameters.time < parameters.endTime) {
10 // solving (section 3.3)
11 }
12

13 // post‐processing (Section 3.4)
14

15 return 0;
16 }

Listing 1: Structure of the main() function.

at the code implementation in detail for each comment.

In case you ever get lost at any point, you can check the entire code in Appendix A
where the entire content of the euler.cpp file can be found.

3.1.3. Header include files
The first part of any C++ program is the header include section, and this code is no
different. Listing 2 shows the required header files for the solver. As you can see, we
only use C++ standard header files and no third-party libraries. Thus, as long as you
have a C++ compiler (with the C++ 2017 standard at a minimum) available, the code
provided will compile.

1 #include <iostream>
2 #include <iomanip>
3 #include <vector>
4 #include <array>
5 #include <cmath>
6 #include <fstream>
7 #include <sstream>
8 #include <string>

Listing 2: Required header files for the solver

We include iostream and iomanip to output results to files and change the formatting
of the output.

The vector and array headers are used later for defining the data structures in our
code, e.g. the conserved variable vector U and the fluxes F(U).

The cmath header includes basic math operations such as the square root, raising a
number to a specific power, and taking the absolute value of a variable.

The fstream header allows us to write files to disk, and it handles things such as file
creation and overwriting if required.
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The string stream (sstream) and string headers allow us to work with strings instead
of just the primitive characters that are a basic C type. This makes our life easier when
we dynamically create the file name for our output files based on the current timestep.

3.1.4. Enum and struct definitions
Along with the header files we need, we also define a few enums and one struct
(custom data type) to help us organise our code a bit more and make the code, in
general, more readable. The definitions are provided in Listing 3.

1 // global enums for easy variable access
2 enum SCHEME { CONSTANT = 0, MUSCL};
3 enum LIMITER { NONE = 0, MINMOD, VANLEER};
4 enum FACE {WEST = 0, EAST};
5

6 // definition for case parameter structure to hold case‐specific settings
7 struct caseParameters {
8 int numberOfPoints;
9 double gamma;

10 double domainLength;
11 double endTime;
12 double CFL;
13 double dx;
14 double time;
15 int timeStep;
16 };

Listing 3: Enum and struct definitions for easier variable access

Let’s look at the enums on lines 2–4 first. An enum allows us to assign a string to a
specific numeric value. For example, the enum FACE on line 4 assigns the value of 0
to the WEST face (i.e. i− 1/2) and 1 to the EAST face (i.e. i+ 1/2).

What do we gain? Well, if we want to check which face is currently being processed,
we can write the following:

1 auto currentFace = /* either 1 for i+1/2 (east) or 0 for i‐1/2 (west) */;
2

3 // without enum
4 if (currentFace == 0) {
5 // perform processing on west face
6 } else if (currentFace == 1) {
7 // perform processing on east face
8 }
9

10 // with enum
11 if (currentFace == FACE::WEST) {
12 // perform processing on west face
13 } else if (currentFace == FACE::EAST) {
14 // perform processing on east face
15 }

We can probably all agree that the code on lines 11–15 is more readable than the
code on lines 4–8. Not only that, but it is also easy to debug and less error-prone.
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An even more evil version of the above code would be to use strings:
1 std::string currentFace = "west"; /* or "west" */
2

3 if (currentFace == "west") {
4 // perform processing on west face
5 } else if (currentFace == "east") {
6 // perform processing on east face
7 }

This seems reasonable, but if you have a typo in your string, then the if/else statement
will not match strings and will not work properly, but no error will be detected by either
the compiler or the runtime environment.

If you have a typo in an enum, the compiler will warn you, and you won’t even get
the code compiled. Thus, enums help us to protect ourselves from bugs before they
have a chance to materialise while providing an easy-to-read string that we can use
for comparisons.

There are also enum classes, which are even safer than plain enums (like we use on
lines 2–4 in Listing 3). However, for the simple (short) code that we are about to write,
it does not really make a difference.

Moving on, on lines 7–16, we define a struct called caseParameters, which holds the
case-specific settings. This will help us organise all case-specific settings into a single
variable.

A struct is a special type of a C++ class where the access specifier is by default public.
This means that any types declared within a struct can be accessed from anywhere.
In contrast, the default behaviour of classes is such that all access is denied (and we
have to provide functions to get and set values typically).

3.2. Pre-processing
OK, in the previous section, we have only really looked at the scaffold of our code,
but we have not really touched upon anything CFD-related. This will change in this
section.

Referring back to the general CFD framework in Figure 2.1, this section will deal with
everything that is contained within the Pre-processing block. We perform all these
tasks once before we start the time loop, where we solve the governing equations (in
this case, the Euler equations).

3.2.1. Read parameters
Listing 4 shows the code responsible for setting up the case parameters. In a real
CFD solver, you would read all of these settings from a file, but this is one of the
points where I decided to simply hard-code them into the C++ file so we avoid having
to deal with file reading here as well. The downside is that we must compile the solver
each time we change some settings.

Lines 1–2 deal with the numerical scheme (as discussed in Section 2.3.1) and the flux
limiter (discussed in Section 2.3.2) we want to use. We simply set one of the enum
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1 auto numericalScheme = SCHEME::MUSCL;
2 auto limiter = LIMITER::VANLEER;
3 caseParameters parameters;
4

5 parameters.numberOfPoints = 101;
6 parameters.gamma = 1.4;
7 parameters.domainLength = 1.0;
8 parameters.endTime = 0.2;
9 parameters.CFL = 0.1;

10

11 parameters.dx = parameters.domainLength / (parameters.numberOfPoints ‐ 1);
12 parameters.time = 0.0;
13 parameters.timeStep = 0;

Listing 4: Setting of the case parameters.

values discussed in Section 3.1.4 here.

Lines 5–9 set some case-specific parameters. On line 5, we specify the number of
points in our domain. More points mean more accuracy and longer compute times
(though they are still reasonably short for this simple solver).

Line 6 sets γ to 1.4 (the default value for air, which is used in this case), and line 7
specifies the length of the domain.

We state on line 8 that we want the simulation to stop at 0.2 seconds and that we want
to compute our timestep using a CFL number of 0.1 on line 9.

Line 11 computes the size of our finite volumes (cells), i.e. ∆x as seen in Figure 2.2,
and we initialise the start time (time) to 0.0 as well as the time step (timeStep) to 0.
Both of these values will be incremented within the time loop.

3.2.2. Allocate memory
Once all parameters are available, especially the size of the domain (i.e. the number
of points specified on line 5 in Listing 4), we can allocate the memory we need. This
is shown in Listing 5.

1 std::vector<double> x(parameters.numberOfPoints);
2 std::vector<std::array<double, 3>> U(parameters.numberOfPoints);
3 std::vector<std::array<std::array<double, 3>, 2>> Ufaces(parameters.

numberOfPoints);
4 std::vector<std::array<std::array<double, 3>, 2>> Ffaces(parameters.

numberOfPoints);

Listing 5: Memory allocation.

Line 1 allocates memory for the x vector. This will contain the centroids of our finite
volumes (cells), i.e. the black dots (and squares, i.e. the boundary centroids, too) as
seen in Figure 2.2.

We use a std::vector data type here, which allows us to allocate memory for as
many elements as we have.
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On line 2, we allocate memory for the conserved variable vectorU, i.e. see Eq.(2.34).
We use a std::vector to have an entry available for each cell in the domain. Then,
wewant to store, for each cell, an std::array containing 3 elements. These elements
are the ones given in Eq.(2.34).

Both std::vector and std::array are very similar, with the only difference in how
we can allocate memory for them.

For a std::vector, we don’t have to specify how large (or small) our vector is, and
we can, at runtime, specify the size. This means we can read the number of elements,
for example, from a file and then have the vector sized based on this input.

A std::array, on the other, requires us to specify the size at compile time. This
means that we have to hardcode the size in the code. For the conserved variable vec-
tor, we don’t know howmany cells we have, so we use a std::vector here. However,
we know we always have 3 entries for each cell (e.g. ρ, ρu, and E), so we can use a
std::array here.

Why don’t we always use a std::vector if it is more flexible, you ask? Because of
performance. A std::array is allocated on the stack while the std::vector goes
onto the heap. The stack is faster than the heap. So, if we have a choice, we prefer
a std::array over a std::vector.

If you have never heard about the stack and heap and why one is more performant
than the other, I have a dedicated article for you that explains this in detail:

Resource 3.2 The complete guide to memory management in C++ for CFD

Finally, the variables Ufaces and Ffaces in Listing 5 on lines 3–4 are the conserved
variable and flux vectors at the faces of the cells (i.e. at i ± 1/2). They are similarly
defined as the U variable on line 2, with an additional std::array to allow us to store
their values for each face (i.e. the east (i+ 1/2) and west (i− 1/2) faces).

Since we have three data types here (i.e. one std::vector and two std::arrays),
we have a three-dimensional data structure and both UFaces and Ffaces are ac-
cessed with three indices, e.g. Ufaces[cell][face][variable].

If you find Listing 5 confusing, you are not alone. C++ is a type-safe programming lan-
guage, meaning that we have to always specify the types used. The syntax isn’t great
and leads easily to confusion (especially when you are dealing with multi-dimensional
data structures like we are).

If youwant to take some time to review data structures in C++ (such as the std::vector
and std::array data structure) and how they really are an amazing baked-in feature
of C++, you can read my article on the standard template library in C++, of which data
structures are an integral part:

Resource 3.3 The power of the standard template library (STL) in C++

https://cfd.university/learn/what-every-cfd-developer-needs-to-know-about-c/understanding-memory-management-in-c
https://cfd.university/learn/what-every-cfd-developer-needs-to-know-about-c/the-power-of-the-standard-template-library-stl-in-c/#aioseo-stl-ingredient-1-3-containers-data-structures
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3.2.3. Create/read mesh
Once we have allocated memory for the grid, we can go ahead and fill our x vector
we saw in Listing 5 on line 1. This is done in Listing 6.

1 for (int i = 0; i < parameters.numberOfPoints; i++) {
2 x[i] = i * parameters.dx;
3 }

Listing 6: Create the 1D mesh.

We loop over all points in our domain and then simply multiply the loop index i by
the size of the finite volumes (cells), which we have labelled ∆x in Figure 2.2 and
parameters.dx in Listing 6.

3.2.4. Initialise solution
After we have populated the mesh, it is time to initialise our solution. This is the last
step in the pre-processing stage and is shown in Listing 7.

1 double rho = 0.0;
2 double u = 0.0;
3 double p = 0.0;
4

5 for (int i = 0; i < parameters.numberOfPoints; i++) {
6 if (x[i] <= 0.5) {
7 rho = 1.0;
8 u = 0.0;
9 p = 1.0;

10 } else {
11 rho = 0.125;
12 u = 0.0;
13 p = 0.1;
14 }
15

16 U[i][0] = rho;
17 U[i][1] = rho * u;
18 U[i][2] = p / (parameters.gamma ‐ 1.0) + 0.5 * rho * std::pow(u, 2);
19 }

Listing 7: Initialising the conserved variable vector U according to Sod’s shock tube problem.

We first define our primitive variables ρ, u and p on lines 1–3 and then loop over all
cells in our 1D mesh. If the x-coordinate of the current cell is less than or equal to 0.5,
we are on the left side of the discontinuous profile as seen in Figure 2.10, and assign
values according to lines 7–9. Otherwise, we use values for the right side, as seen on
lines 11–13.

Once we have defined the values of the primitive variables, we have to compute the
conserved variables, i.e. see Eq.(2.34). We do that on lines 16–18, where we write
the conserved variables into our conserved variable vector U.
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3.3. Solving
Now that we have specified all case-relevant parameters, allocated memory, assigned
initial values and created our mesh, it is time to advance the initial solution in time
according to our governing equations, i.e. Eq.(2.44).

The steps required to solve this equation are outlined in the next sections. All sub-
sections within this section are executed within the while() loop as seen in Listing 1
on line 10.

3.3.1. Preparing solution update
In this section, we set up the solution update, i.e. we set or update variables required
for the solution update. This typically involved calculating a stable time step storing
the solution from the previous iteration, which is what is shown in Listing 8.

1 // Preparing solution update (store old solution and calculate stable
timestep)

2 auto UOld = U;
3

4 // calculate stable time step
5 double speedMax = 0.0;
6 for (int i = 0; i < parameters.numberOfPoints; i++) {
7 // we need the primitive variables first to compute the wave speed (

based on speed of sound and local velocity)
8 auto rho = U[i][0];
9 auto u = U[i][1] / rho;

10 auto p = (parameters.gamma ‐ 1.0) * (U[i][2] ‐ 0.5 * rho * std::pow(u,
2));

11

12 // calculate wave speed for each cell
13 double speedOfSound = std::sqrt(parameters.gamma * p / rho);
14 if (speedOfSound + std::fabs(u) > speedMax)
15 speedMax = speedOfSound + std::fabs(u);
16 }
17 double dt = (parameters.CFL * parameters.dx) / speedMax;

Listing 8: Storing the solution from the previous iteration and calculating a stable time step.

First, we store the conserved variable vector U into UOld. This is a common naming
convention, e.g. OpenFOAM uses the same terminology.

Within the loop starting on line 6, we calculate the fastest speed waves in our solution.
To do that, we first need to determine what the fastest wave speeds are. The wave
speeds are equivalent to the eigenvalues of the flux Jacobian. Great, but what is the
flux Jacobian, you ask?

Well, without going into too much detail here (because it is not necessary to under-
stand this step to write your own solver), we start with our conserved variable vector
U, i.e. Eq.(2.34) and the flux vector F(U), i.e. Eq.(2.35). Then, we compute the
Jacobian matrix as:
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A(U) =
∂F(U)

U
=


∂F1

∂U1

∂F1

∂U2

∂F1

∂U3

∂F2

∂U1

∂F2

∂U2

∂F2

∂U3

∂F3

∂U1

∂F3

∂U2

∂F3

∂U3

 (3.1)

We have to transform all fluxes F(U) into variables given byU. For example, F1 = ρu,
and U2 = ρu (see Eq.(2.34) and Eq.(2.35)). Thus, in this simple case we have F1 = U2

and the first row of the Jacobian matrix in Eq.(3.1) is computed as:

∂F1

∂U1

= 0,
∂F1

∂U2

= 1,
∂F1

∂U3

= 0 (3.2)

The bookRiemann Solvers and Numerical Methods for Fluid Dynamics by Toro, Chap-
ter 3, is a great reference if you want to readmore about the eigenstructure of the Euler
equations.

Once we have determined the whole Jacobianmatrix, we can compute its eigenvalues.
These are given as:

λ1 = u− a

λ2 = u

λ3 = u+ a (3.3)

Here, u is the local velocity in the x-direction, while a is the local speed of sound. Since
the speed of sound a is, by definition, always positive, we could guess that the fastest
wave speed must be λ3. However, if we have a left-travelling wave, the fastest velocity
is negative, and thus λ1 is greatest.

There are many different ways how to compute the fastest wave speeds, but the sim-
plest one is the one we are using in Listing 8, i.e. we are looking at a modified definition
of λ3 as Smax = |u| + a. This ensures the local velocity is always positive, and this
should give us the fastest wave speed.

OK, so let’s return to Listing 8. Lines 6–16 loop through all cells. First, we must
find the local primitive variables ρ, u and p. This is done on lines 8–10, and we are
implementing the procedure discussed in Section 2.2.5.

With these available, we can compute the local speed of sound from ρ and p (line 13)
and then check if |u|+ a is greater than the currently largest wave speed stored in the
variable speedMax (line 14). If that is the case, we overwrite it (line 15).

Finally, we can compute a stable time step based on the CFL condition. We haven’t
really touched upon the CFL number in this document, but if this is the first time you
hear it, think of it as a non-dimensional time step.
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Imagine we are releasing a particle in the flow, and we want to measure the distance
it has travelled after one time step. Let’s assume that the cell in which we release the
particle has a size (length) of ∆x.

Then, if the particle is moving exactly one cell distance, i.e. ∆x, then we have a CFL
number of CFL = 1. Equally, if it has only travelled half a cell’s distance, we have a
CFL number of CFL = 0.5.

Thus, the CFL number takes the cell’s size and local flow velocity within that cell into
account to determine how far disturbances propagate within one time step. I have
used an analogy of a particle moving with the flow, but a disturbance is a more general
way of looking at this.

Typically, a disturbance is some form of wave. If we know the fastest wave speed (i.e.
from the eigenvalues), then we can determine the cell with the fastest wave speed
and use that to determine our CFL condition as:

CFL =
∆t

∆x
Smax (3.4)

The CFL number is a crucial concept in CFD and is typically used for stability con-
siderations. Typically, explicit time integration schemes, such as the first-order Euler
scheme discussed in Section 2.3.4.1, are stable if the CFL number is less than or
equal to 1.

We saw, however, that the CFL number is set to 0.1 in Listing 4. Why is that? Well,
the flow is highly non-linear, and we are making some approximations along our dis-
cretisation (for example, the piecewise constant reconstruction in Section 2.3.1.1 is a
pretty severe simplification).

To give us some additional room for stability, we use a low CFL number of 0.1, but
you can try to increase it and still get usable results. However, you may also start to
notice some numerical instabilities. We will investigate this further in Section 4.3.3.

Solving Eq.(3.4) for the time step ∆t gives us:

∆t = CFL
∆x

Smax

(3.5)

Eq.(3.5) is implemented on line 17 in Listing 8 and provides us with a stable time step
to advance our solution time, i.e. we need ∆t in the discretised form of the Euler
equations as seen in Eq.(2.70).

We need to compute a stable time for each iteration, as the local velocities and local
speed of sound change constantly. Thus, this is the first computational we perform at
the beginning of each time step.

3.3.2. Solve equations
We have a stable time step, so now it is time to advance our solution in time. This is
done in the current section. Most of the computational cost will be spent on solving
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the equations, and, indeed, most of the code is within this section.

This includes first reconstructing (interpolating) variables to the cell faces, then com-
puting local fluxes, and then solving the Riemann problem at each face. We use the
Riemann solver consolidated fluxes to update Eq.(2.70) in time. Let us review each
step in detail below.

3.3.2.1. Reconstruct states at faces i± 1/2
We saw from Eq.(2.70) that variables are required at i ± 1/2. This means we must
reconstruct (interpolate) variables to the cell faces. In Section 2.3.1, we looked at the
piecewise constant reconstruction (Section 2.3.1.1) and the MUSCL scheme (Sec-
tion 2.3.1.2).

In this section, we will look at how to implement both of them. The first thing we need to
check is which numerical scheme to use. This is done in Listing 9. Here, the variable
numericalScheme was set on line 1 in Listing 4. We are now using our enum SCHEME
(see Listing 3) to check which scheme to use.

1 if (numericalScheme == SCHEME::CONSTANT) {
2 // piecewise constant reconstruction
3 } else if (numericalScheme == SCHEME::MUSCL) {
4 // MUSCL scheme
5 }

Listing 9: Choosing the reconstruction method

If we are using the piecewise constant reconstruction (line 2 in Listing 9), then we
execute the code provided in Listing 10. If we have set up the simulation to use the
MUSCL scheme instead, we execute the code provided in Listing 11 located on line
4 in Listing 9.

1 for (int i = 0; i < parameters.numberOfPoints; i++) {
2 for (int variable = 0; variable < 3; ++variable) {
3 Ufaces[i][FACE::WEST][variable] = U[i][variable];
4 Ufaces[i][FACE::EAST][variable] = U[i][variable];
5 }
6 }

Listing 10: Piecewise constant reconstruction

The piecewise constant reconstruction is given by Eq.(2.52) in Section 2.3.1.1. We
said that this simply copies the values from the cell centres to the cell faces, and we
can see that this is done here.

We can also see that we have two loops, one over all cells (the first loop) and one
over all variables (the second loop). We saw from the conserved variable vector U, i.e.
Eq.(2.34) that we have 3 entries in total for a 1D case, thus our second loop is going
from 0 to 2 (see line 2 in Listing 10).

I should point out that FACE::EAST corresponds to the face located at i + 1/2 and
FACE::WEST corresponds to the face at i− 1/2. This just reads better than, say, ip12
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and im12 for i + 1/2 and i− 1/2, respectively. Thus, whenever you see FACE::EAST
and FACE::WEST, you will need to replace that with i+ 1/2 and i− 1/2, respectively.

1 // use lower‐order scheme near boundaries
2 for (int variable = 0; variable < 3; ++variable) {
3 Ufaces[0][FACE::WEST][variable] = U[0][variable];
4 Ufaces[0][FACE::EAST][variable] = U[0][variable];
5

6 Ufaces[parameters.numberOfPoints ‐ 1][FACE::WEST][variable] = U[
parameters.numberOfPoints ‐ 1][variable];

7 Ufaces[parameters.numberOfPoints ‐ 1][FACE::EAST][variable] = U[
parameters.numberOfPoints ‐ 1][variable];

8 }
9

10 // use high‐resolution MUSCL scheme on interior nodes / cells
11 for (int i = 1; i < parameters.numberOfPoints ‐ 1; i++) {
12 for (int variable = 0; variable < 3; ++variable) {
13 auto du_i_plus_half = U[i + 1][variable] ‐ U[i][variable];
14 auto du_i_minus_half = U[i][variable] ‐ U[i ‐ 1][variable];
15

16 double rL = du_i_minus_half / (du_i_plus_half + 1e‐8);
17 double rR = du_i_plus_half / (du_i_minus_half + 1e‐8);
18

19 double psiL = 1.0;
20 double psiR = 1.0;
21

22 // apply limiter to make scheme TVD (total variation diminishing)
23 if (limiter == LIMITER::MINMOD) {
24 psiL = std::max(0.0, std::min(1.0, rL));
25 psiR = std::max(0.0, std::min(1.0, rR));
26 } else if (limiter == LIMITER::VANLEER) {
27 psiL = (rL + std::fabs(rL)) / (1.0 + std::fabs(rL));
28 psiR = (rR + std::fabs(rR)) / (1.0 + std::fabs(rR));
29 }
30

31 Ufaces[i][FACE::WEST][variable] = U[i][variable]
32 ‐ 0.5 * psiL * du_i_plus_half;
33 Ufaces[i][FACE::EAST][variable] = U[i][variable]
34 + 0.5 * psiR * du_i_minus_half;
35 }
36 }

Listing 11: MUSCL scheme implementation, including flux limiters

Listing 11 shows the implementation of the MUSCL scheme. Lines 2–8 look a lot like
the piecewise constant reconstruction, and indeed, this is exactly what we are doing
here. Why? Well, look back at Eq.(2.53), here, we nee variables at i+1 and i−1. If we
were to loop over all cells, the cells near the boundaries would not have a neighbour
cell, and thus, we could not access i+ 1 and i− 1.

Thus, near the boundaries, we typically resort to a lower-order scheme if we have
to. Another approach is to use so-called ghost cells, adding extra cells beyond the
boundaries to reconstruct the variables near the boundary with the same scheme
(e.g. the MUSCL scheme).
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Ghost cells are not that easy to generalise for unstructured grids (though it can be
done), but using a lower-order scheme near the boundary is, so that is why we are
using it here.

Once we have obtained values for the cells near boundaries (e.g. lines 2–8 in List-
ing 11), we can reconstruct the variables on the internal domain using the MUSCL
scheme.

Lines 13 and 14 help us write the code a bit more compactly. On line 15, we compute
the modified smoothness indicator as given by Eq.(2.55), where ϵ = 10−8.

We set a default value of one for the flux limiter on lines 19–20, discussed in Sec-
tion 2.3.2. If we are not using any flux limiter, then this value will remain, and we will
not influence the MUSCL scheme reconstruction later.

However, if we dowant to use a limiter (andwe really do!), thenwe compute the flux lim-
iter for the left (west) and right (east) faces. This is done on lines 23–29, where we im-
plement both the minmod (Section 2.3.2.1) and the van Leer limiter (Section 2.3.2.2).

With values for the flux limiters obtained, we can compute the face reconstructed
variables on lines 31–34 in Listing 11, which simply implement Eq.(2.53). Similar to
the piecewise constant reconstruction, we are also looping over all variables (i.e. 3 in
this 1D case) to repeat this reconstruction step for all variables listed in Eq.(2.34).

3.3.2.2. Compute fluxes at faces i± 1/2 and solve the Riemann problem
Once we have the left-sided and right-sided variables reconstructed at each face, i.e.
ϕL
i+1/2 and ϕR

i+1/2, we can compute the fluxes at each side of a face. We will use these
fluxes then in our Riemann solver, i.e. Eq.(2.62), to get a single flux at each face. This
is shown in Listing 12.

On line 2, we define a temporary array for the left-sided and right-sided fluxes that we
compute for each face. Then, we loop over each cell on line 3, and on line 4, we loop
over each face. In this 1D case, we only have faces to the east (right) and west (left).

Remember that FACE::WEST and FACE::EAST are just integer values, where we have
FACE::WEST = 0 and FACE::EAST = 1. Thus, we could have also written line 4 as:

1 for (int face = 0; face <= 1; ++face)

Both would have worked the same, but line 4 in Listing 12 is more readable.

Lines 5–7 define the variable indexOffset. This is used to distinguish between the
east and west faces. For the west (left) face, we have indexOffset = 0 and for the
east (right) face, we have indexOffset = 1.

Let’s see why we have to do this. On lines 9–13, we compute the left-sided primitive
variables for each face. For example, we get the density on line 9. We see that we
access Ufaces here, which holds all reconstructed variables at the faces i ± 1/2 (i.e.
the east and west faces).

The following mapping can be used to relate our equations to the code provided in
Listing 12:
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1 // compute fluxes at faces
2 std::array<double, 3> fluxL, fluxR;
3 for (int i=1; i < parameters.numberOfPoints ‐ 1; i++) {
4 for (int face = FACE::WEST; face <= FACE::EAST; ++face) {
5 int indexOffset = 0;
6 if (face == FACE::WEST) indexOffset = 0;
7 else if (face == FACE::EAST) indexOffset = 1;
8

9 auto rhoL = Ufaces[i ‐ 1 + indexOffset][FACE::EAST][0];
10 auto uL = Ufaces[i ‐ 1 + indexOffset][FACE::EAST][1] / rhoL;
11 auto EL = Ufaces[i ‐ 1 + indexOffset][FACE::EAST][2];
12 auto pL = (parameters.gamma ‐ 1.0) * (EL ‐ 0.5 * rhoL * std::pow(uL,

2));
13 auto aL = std::sqrt(parameters.gamma * pL / rhoL);
14

15 auto rhoR = Ufaces[i + indexOffset][FACE::WEST][0];
16 auto uR = Ufaces[i + indexOffset][FACE::WEST][1] / rhoR;
17 auto ER = Ufaces[i + indexOffset][FACE::WEST][2];
18 auto pR = (parameters.gamma ‐ 1.0) * (ER ‐ 0.5 * rhoR * std::pow(uR,

2));
19 auto aR = std::sqrt(parameters.gamma * pR / rhoR);
20

21 fluxL[0] = rhoL * uL;
22 fluxL[1] = pL + rhoL * std::pow(uL, 2);
23 fluxL[2] = uL * (EL + pL);
24

25 fluxR[0] = rhoR * uR;
26 fluxR[1] = pR + rhoR * std::pow(uR, 2);
27 fluxR[2] = uR * (ER + pR);
28

29 // Rusanov Riemann solver
30 auto speedMax = std::max(std::fabs(uL) + aL, std::fabs(uR) + aR);
31 for (int variable = 0; variable < 3; ++variable) {
32 const auto &qL = Ufaces[i ‐ 1 + indexOffset][FACE::EAST][variable];
33 const auto &qR = Ufaces[i + indexOffset][FACE::WEST][variable];
34 const auto &fL = fluxL[variable];
35 const auto &fR = fluxR[variable];
36 Ffaces[i][face][variable] = 0.5 * (fL + fR) ‐ speedMax * (qR ‐ qL);
37 }
38 }
39 }

Listing 12: Compute the fluxes at the faces and solve the Riemann problem using the Rusanov
Riemann solver (or local Lax-Friedrichs scheme)
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ϕL
i+1/2 = ϕ[i][FACE :: EAST]

ϕR
i+1/2 = ϕ[i+ 1][FACE :: WEST]

ϕL
i−1/2 = ϕ[i− 1][FACE :: EAST]

ϕR
i−1/2 = ϕ[i][FACE :: WEST] (3.6)

Here, the first index of Ufaces is used to loop over all cells. The index we use for that
is i ‐ 1 + indexOffset. If indexOffset = 0 (i.e. we are currently working on the
west face), then we take values at i ‐ 1.

Since line 9 in Listing 12 looks at the left-sided reconstructed density at the west face
(indexOffset = 0), we can see from Eq.(3.6) that line 9 is for ρLi−1/2. The correspond-
ing code is Ufaces[i ‐ 1][FACE::EAST][0].

We can confirm that this is correct by looking at Figure 2.3, where ϕL
i−1/2 would be

stored at the cell with index i ‐ 1, specifically, at its east face.

Once we have obtained the primitive variables at both the east and west faces for
each cell, we can compute the flux vector as given by Eq.(2.35). This is done on lines
21–23 and 25–27 in Listing 12 for the left and right side of the face, respectively.

Now that we have both the conserved variables and the fluxes available at the face,
both with their left and right state, we can go ahead and solve the Riemann problem
for it. This is what is done on lines 30–37.

First, we have to compute a suitable wave speed. We are using the Rusanov Riemann
solver (or local Lax-Friedrichs scheme), where we have established the simple yet
effective wave speed estimate in Eq.(2.60). This equation is implemented on line 30
in Listing 12.

Lines 31–37 loop over all three entries in our conserved variable vectorU and the flux
vector F(U). To make the equation shorter to write, we introduce the temporary on
lines 32–35. This isn’t required but just makes line 36 more compact to write.

Line 36 is the Rusanov Riemann solver, corresponding to Eq.(2.62). Thus, we obtain
a single flux at the face from the left and right-sided states and fluxes. We store this
flux in the new flux vector Ffaces, which will be used in the next part when integrating
the Euler equation in time.

3.3.2.3. Integrate solution in time
Ok, at this point, we have everything we need. Let’s review Eq.(2.70), which is repro-
duced below for convenience again:

Un+1
i = Un

i −
∆t

∆x

(
F̃(U)n

i+ 1
2
− F̃(U)n

i− 1
2

)
We know Un

i , this is just UOld[i] as seen in Section 3.3.1. Within the same section,
we also computed a stable time step denoted by ∆t above. When we set up the case
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parameter in Section 3.2.1, we defined ∆x, and in the previous section, we computed
the fluxes at the faces, i.e. F̃(U)ni±1/2 through the Rusanov Riemann solver.

All that is left to do is to implement Eq.(2.70) into code, which is done in Listing 13. We
loop over all points (except the boundary points, these will be discussed in the next
section), and for each cell with index i, we loop over all 3 quantities in our conserved
variable vector U, using index j.

1 for (int i=1; i < parameters.numberOfPoints ‐ 1; i++)
2 for (int j=0; j<3; j++) {
3 const auto &dF = Ffaces[i][FACE::EAST][j] ‐ Ffaces[i][FACE::WEST][j];
4 U[i][j] = UOld[i][j] ‐ (dt / parameters.dx) * dF;
5 }

Listing 13: Integrate solution in time using a first-order Euler time integration method.

3.3.3. Update boundary conditions
In the previous section, I mentioned that we are not integrating the solution at the first
and last points of the domain. Returning to Figure 2.2, we introduce these points as
boundary points, and thus, we have to apply our boundary conditions here.

In this simple case, the flow is driven by the initial discontinuity at the centre of the do-
main, and we stop the simulation after 0.2 seconds. The generated waves do not have
sufficient time to reach the boundaries within that time, so the boundary conditions we
are imposing do not matter (in fact, we could ignore this section).

However, generally speaking, boundary conditions are absolutely crucial, and our sim-
ulation will always converge towards the boundary conditions we set. If our boundary
conditions are wrong or inaccurate, our simulation will be, too. Thus, let’s be good
citizens and provide our solver with some boundary conditions.

In Section 2.4, we looked at different types of boundary conditions we can impose.
In this particular case, we want to assume an inviscid wall on either side so that the
generated waves can reflect at boundaries. Go ahead and change the simulation end
time in Listing 4, say, to 0.5 seconds. You will see waves reflecting off from the right
boundary and new structures forming.

The boundary conditions for an inviscid wall, as discussed in Section 2.4.4.1, are
implemented in Listing 14. We use a Dirichlet-type boundary condition for the velocity
(it has to be 0 so that no flow is going through the wall) and a Neumann-type boundary
condition for the pressure, density, and energy.

Even though we set the density for the left and right boundary on lines 1 and 4, we only
do so for completeness, as we have to impose ρu in the conserved variable vector, i.e.
see Eq.(2.34). The product of ρu will be zero, and thus, the second entry in the vector
will be zero.

We see the imposition of boundary conditions on lines 7–9 for the left boundary and
lines 11–13 for the right boundary. We already established that we use Dirichlet bound-
ary condition for the second entry in U. However, the first and third entries use a
Neumann condition.
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1 auto rhoL = 1.0;
2 auto uL = 0.0;
3

4 auto rhoR = 0.125;
5 auto uR = 0.0;
6

7 U[0][0] = U[1][0];
8 U[0][1] = rhoL * uL;
9 U[0][2] = U[1][2];

10

11 U[parameters.numberOfPoints ‐ 1][0] = U[parameters.numberOfPoints ‐ 2][0];
12 U[parameters.numberOfPoints ‐ 1][1] = rhoR * uR;
13 U[parameters.numberOfPoints ‐ 1][2] = U[parameters.numberOfPoints ‐ 2][2];

Listing 14: Update boundary conditions

We can see that using a Neumann condition with a zero-gradient, e.g. ∂ϕ/∂n = 0,
results in copying whatever value is in the cell next to the boundary into the boundary
cell. This is in agreement with Eq.(2.80) and Eq.(2.83).

3.3.4. Custom post-processing
Now that we have an updated solution for the current time step, we want to output it
to look at the animated solution. There are many different ways to produce a solution
file. However, we opt here for a simple *.csv file that we write out at each time step.

A *.csv file simply stores a list of comma separated values (hence the name csv). In
our case, we want to write out ρ, u and p at each point in the domain. A simple *.csv
file with 11 grid points containing the initial solution may look like this:

1 x,rho,u,p
2 0.0, 1.0, 0.0, 1.0
3 0.1, 1.0, 0.0, 1.0
4 0.2, 1.0, 0.0, 1.0
5 0.3, 1.0, 0.0, 1.0
6 0.4, 1.0, 0.0, 1.0
7 0.5, 1.0, 0.0, 1.0
8 0.6, 0.125, 0.0, 0.1
9 0.7, 0.125, 0.0, 0.1

10 0.8, 0.125, 0.0, 0.1
11 0.9, 0.125, 0.0, 0.1
12 1.0, 0.125, 0.0, 0.1

That’s all. The advantage of a *.csv file is that we can open it with pretty much any
processing tool we want. For example, we can easily read it into Excel and plot the
columns, read it into Python using the pandas package, or even read it with the post-
processor Paraview and animate the solution in time.

Whatever route we choose, for 1D data, a *.csv file is likely the easiest solution to
implement. The algorithm to do that is shown in Listing 15.

We are using the std::ofstream class here, which allows us to write out data to a file.
Since we want to write out the files for each time step, we need to make the current
time step part of the filename.
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1 // Output solution to csv file for plotting
2 std::ofstream outputFile;
3

4 // convert time step and points into 6 digits string with leading zeros
5 std::ostringstream timeStepTemp, pointsTemp;
6

7 timeStepTemp << std::setfill('0') << std::setw(6);
8 timeStepTemp << parameters.timeStep;
9 auto timeStep = timeStepTemp.str();

10

11 pointsTemp << std::setfill('0') << std::setw(6);
12 pointsTemp << parameters.numberOfPoints;
13 auto points = pointsTemp.str();
14

15 outputFile.open("solution_" + points + "_" + timeStep + ".csv");
16 outputFile << "x,rho,u,p" << std::endl;
17 for (int i = 0; i < parameters.numberOfPoints; i++) {
18 auto rho = U[i][0];
19 auto u = U[i][1] / rho;
20 auto p = (parameters.gamma ‐ 1.0) * (U[i][2] ‐ 0.5 * rho * std::pow(u,

2));
21 outputFile << x[i] << "," << rho << "," << u << "," << p << std::endl;
22 }
23 outputFile.close();

Listing 15: Output primitiv variables ρ, u and p to a CSV file for each timestep.

Thus, we first convert the current time step into a string using the string stream class
on lines 7–9. The string stream class allows us to perform some useful modifications
on our strings, for example, fill a string with leading zeros, which is what we want here.
i.e. lines 7–9 take the current timestep and convert it into a string, making sure that
the string is always 6 characters long (by using leading zeros if necessary).

The std::setfill function declares the leading characters to use when filling the
string (here, 0), while the std::setw(6) states that the width of the string should be
6 characters.

Lines 11–13 repeat this step for the number of points, and this allows us also to encode
this information in the filename so that we can have different solutions for different grid
sizes stored on our disk for comparisons.

Line 15 creates a new file, where the file name is dynamically generated using the
number of points and time step as variables. We then write the required header on
line 16 and then loop over all cells on lines 17–22.

Within the loop, we first need to calculate the primitive variables ρ, u and p from the
conserved variable vector U (lines 18–20), and then we proceed on line 21 to write
out these variables to the file. Once the loop is completed, we close the file on line
23.
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3.3.5. Check if the simulation has ended
Finally, we need to check if the simulation has finished. In our case, we specify that
after a certain amount of time, we want to stop the simulation. And, we saw in Listing 1
that within the while() loop on lines 9–11, we check if we have reached the end time
of the simulation.

So, in a sense, the check for the end of the simulation is really done here. However,
we also need to have a mechanism to increase the time and time step variable. This
is done in Listing 16.

1 parameters.time += dt;
2 parameters.timeStep++;

Listing 16: Check if the solution has ended by incrementing the time and time step.

In this case, we simply increase the time step and add the current∆t value to the total
time (line 1). For transient simulations, this is a common stopping criterion.

However, steady-state codes, or even unsteady codes, which march a solution to-
wards a steady-state-like solution, we may also want to implement some form of resid-
ual checking in this part. For our solver, though, we are happy with just checking for
the end time.

If you want to read up more on the difficulties of checking convergence and how to
do it properly, along with a framework to ensure you have optimal stopping criteria
available, you might want to check my article on checking convergence in the article
linked below:

Resource 3.4 How to determine the best stopping criterion for CFD simulations

Furthermore, we should output some information to the console about the progress of
the simulation. We are probably interested in how much (simulation) time has elapsed
and how many time steps we have used thus far. This information is provided by
Listing 17.

1 // output current time step information to screen
2 std::cout << "Current time: " << std::scientific << std::setw(10) << std::

setprecision(3) << parameters.time;
3 std::cout << ", End time: " << std::scientific << std::setw(10) << std::

setprecision(3) << parameters.endTime;
4 std::cout << ", Current time step: " << std::fixed << std::setw(7) <<

parameters.timeStep;
5 std::cout << "\r";

Listing 17: Output the current simulation time and time step to the console.

We are using here some formatting features of C++, which are frustratingly compli-
cated, especially if you are used to things such as f-strings in Python. Anyhow, that’s
the price we have to pay to use C++.

https://cfd.university/blog/how-to-determine-the-best-stopping-criterion-for-cfd-simulations/


3.4. Post-processing 59

We are printing three quantities to screen. First, we print the current (simulated) time,
then the time at which we want to stop the simulation, followed by the current timestep.

In C++, we can represent numbers as either floating point notation, e.g. 0.00123, or
exponential notation, e.g. 1.23e−3. The std::fixed keyword tells C++ to use floating
point notation, while std::scientific uses exponential notation.

The current (simulated) time and timestep will be printed using exponential notation.
The time step, which is just an integer value, does not need exponential notation, i.e.
it would be strange to write time step (iteration) 123 as 1.23e2.

Then, we can influence how many digits we want to use after the comma. This is
what the command std::setprecision(3) is doing. Here, 3 means we want to use
3 digits after the comma. The command std::setw(10) tells C++ that we want to
use a total of 10 characters to print a given number. If we do not need 10 characters
to print the entire number, it will be padded with leading spaces.

Finally, we use a little trick on line 5. Here, the command std::cout << "\r" in-
structs C++ to avoid a line break and, instead, go back to the beginning of the current
line. The next time we print to the console, we will simply overwrite the previous line.

Since we have specified the width of each number using the std::setw() command,
we can ensure that each line that is being printed will have the same length. The only
thing that is changing is the numerical values themselves. Thus, we only see a single
line that is constantly being updated, which will keep our terminal clean.

3.4. Post-processing
Finally, we have the post-processing section. Here, we typically write out the solution
to file once the simulation has finished and de-allocate any memory we need to take
care of. This is discussed in the following sections.

3.4.1. Write out solution
We could implement some additional solution output writing, for example, in a native
Paraview format. However, since the *.csv output files provide us with all the in-
formation we need, there is no need to complicate things further here and write out
additional files. Thus, there is nothing to be done in this section for our solver.

3.4.2. Deallocate memory
Memorymanagement is crucial in C++ and canmake or break your code. C++ is a low-
level programming language, meaning we are responsible for all memory allocations
and de-allocations.

However, if we use C++ as the designers have intended us to do, then we can actually
offload quite a lot of memory management.

Whenever we use a built-in data type of C++, i.e. one from the standard template
library (STL) such as a std::vector, then all memory management is done for us.

We only ever need to worry about memory when we are dealing with pointers; how-
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ever, that has become an issue of the past since C++ introduced smart pointers. I
have, again, written a dedicated article on smart pointers and why they are truly amaz-
ing, and you can find the article linked below:

Resource 3.5 Reduce memory bugs with smart pointers in C++

Thus, since we are good programmers and have exclusively used STL data types (so-
called containers), we don’t have to worry about memory de-allocation, and we don’t
have to do anything in this section either.

3.5. Summary
This brings us to the end of the code implementation. Hopefully, after going through
the theory in Chapter 2, this Chapter did make sense, and you were able to follow the
discussion.

Remember that you can always look at the full source code in Appendix A or by con-
sulting the source code that you should have received with this document.

In the next section, we will look at how to compile the code, how to run it, and then
how to process and inspect the results.

https://cfd.university/learn/what-every-cfd-developer-needs-to-know-about-c/reduce-memory-bugs-with-smart-pointers-in-c/


4
Running simulations and visualising

results

Now that we have an idea of the theory as discussed in Chapter 2, as well as how to
put that theory into code as discussed in Chapter 3, it is time to compile and run our
solver. In this chapter, we will look at how to do just that.

First, we will look through several ways to compile the code. Since we are using C++,
which is a compiled language, we need to translate the source code into machine-
readable code (typically called an object file). This is what the compiler will do for
us.

Then, the linker will take all object files (in our case, just one, as we only have a single
source file) and link them into one executable file. On Windows, that would be a file
ending in *.exe, while on Linux or macOS, it is customary to use either no extension
or *.out.

Even though we only need to compile a single source file, this can sometimes be a
challenge already, depending on the operating system you are using and the devel-
opment set-up you have (or a lack thereof). Thus, I present a few solutions with the
hope that at least one of them will work for you.

If you have not already done so, I suggest you have at least a glimpse at the recom-
mended way to set up your system so that you can compile C++ code. The link was
provided in Chapter 1, which is repeated below for convenience:

Resource 4.1 Setting up a programming environment to develop CFD codes

4.1. Compiling and running our CFD solver
Right, let us jump straight into the process and compile our solver. I will show you
two ways of doing it. First, we will look at the manual way, where we must do all the
compilation ourselves. Afterwards, I’ll show you a more streamlined approach which
you can use if you have CMake installed, which I would generally recommend for
reasons discussed later.
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4.1.1. Compiling the code manually
Compiling the code ourselves requires a bit of typing, and what exactly we have to
type into our console depends on the operating system. In the following, we will look
at instructions for Windows and Linux / macOS.

4.1.1.1. Windows
While there are a lot of different C++ compilers available that you can use for Win-
dows, I am only interested in compiling code natively on Windows. That means using
Microsoft’s MSVC compiler, which will be installed when we download Visual Studio
and install the required C++ components.

There are botched ways of bringing back a UNIX (Linux or macOS-like) development
environment on Windows (e.g. MinGW or WSL), but these, to me, qualify as a UNIX
solution and are not helpful if you are trying to understand how to compile code natively
on Windows.

Thus, if you have set up your system correctly, you should be able to open a Power-
Shell (either theDeveloper PowerShell for VS 20XX or a customised one as discussed
in the above-linked article on setting up a programming environment), and then type
cl into it and get an output similar to the one below:

1 Microsoft (R) C/C++ Optimizing Compiler Version 19.42.34435 for x64
2 Copyright (C) Microsoft Corporation. All rights reserved.
3

4 usage: cl [ option... ] filename... [ /link linkoption... ]

This means we have Microsoft’s MSVC compiler installed, and it is ready to use. Of
course, we could just throw the compiler at our source file and let it create an exe-
cutable, but that would be the same as going to a fancy restaurant and eating your
steak using your hands. Let’s be civilised and use some common conventions.

First, we want to keep our source code separate from anything the compiler gener-
ates, i.e. any object or executable files. We also want to store any output our solver
generates in a separate folder. It is common to create a build/ folder containing all
the generated files.

Using the PowerShell, the following commands can be used for this:
1 Remove‐Item .\build ‐Force ‐Recurse
2 New‐Item ‐Name "build" ‐ItemType "directory"

First, we remove the build/ folder, if already available, and then re-created it. This
will eliminate any previously generated files, and we will ensure that we always get a
clean build.

Next, we compile the code into an object file. We use the cl compile here, using the
following command:

1 cl.exe /nologo /EHsc /std:c++17 /I. /c /O2 .\euler.cpp /Fo".\build\euler.
obj"

Whenever we use the cl compiler, it reminds us that Microsoft developed it. To sup-
press that behaviour, we can use the /logo flag. The /EHsc flag will turn on proper
exception handling. Without it, you will get a lot of warnings printed to the console,
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even if your code is compiling just fine. This is really annoying when tracking down
bugs and error messages being hidden in a lot of warnings.

We use the C++ 2017 standard, which is necessary for certain string manipulation
features. We specify this with the /std:c++17 flag. Additionally, we instruct the com-
piler to include the current directory using the /I. flag, to compile the file with the /c
flag, and to optimise the code with the /O2 flag, which can significantly enhance the
performance of our code.

We tell the compiler that we want to compile the file called euler.cpp and output the
generated object file into the build/ folder using the /Fo flag. The generated object
file will be called euler.obj.

The next step involves calling the linker, which is done with the following command:
1 cl.exe /nologo .\build\euler.obj /Fe".\build\euler.exe"

This command is pretty similar to the previous one, where the input now changes to
.\build\euler.obj, i.e. we provide the linker with the object file, and then we tell it
to generate an executable within the build/ folder using the Fe flag. We are calling
the executable euler.exe.

I should say that we call the cl compiler in the command above, though it will pass
all the input to the actual linker for us so that we don’t have to deal with the linker
ourselves. This is for a good reason, as the linker can require some additional flags
that the compiler can deduce.

With the above commands executed, we should have the euler.exe file within our
build/ folder.

4.1.1.2. Linux and macOS
Linux and macOS behave pretty much the same, and thus, we can discuss both of
them in the same section. We will follow the same steps as outlined above in the
Windows section; that is, we will first create a build/ folder to house all of the compiler
output and then proceed to generate the solver.

First, we remove any build/ folder that may exist. Afterwards, we recreate it to en-
sure no previous compiler-generated files are present. This can be achieved with the
following two commands:

1 rm ‐rf build
2 mkdir build

Then, we go ahead and compile our code. In this case, I will assume you are using
the GNU compiler suite, i.e. g++, to compile C++ code. If you are on macOS (or on
Linux and just a bit eccentric), then you might have the LLVM compilers installed, i.e.
clang++ for compiling C++ code. If that is the case, just replace g++ with clang++.

To compile the code, turn on the C++ 2017 standard, including the current directory
and optimising the code, we can use the following command:

1 g++ ‐std=c++17 ‐I. ‐c ‐O2 euler.cpp ‐o build/euler.o
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This will generate an object file within the build/ directory called euler.o. The linker
can now be called on the object file to generate the executable using the following
syntax:

1 g++ build/euler.o ‐o build/euler

We generate the executable euler within the build/ folder. Note that we do not
give it any extension as on Windows. This is customary on UNIX platforms and the
convention we will adopt here. And, again, if you are using LLVM, replace g++ with
clang++.

4.1.2. Compiling the code using CMake
Finally, let’s have a look at compiling the code using CMake. This assumes that you
have CMake installed on your PC. CMake is a build system that compiles the code for
you by selecting the appropriate compiler for your operating system.

Thus, it does not matter if you are on Windows, Linux, or macOS. CMake will always
generate a correct build for your platform, and thus, it is the recommended way of
compiling code.

CMake is a beast. It not only helps you compile your code (and link it against depen-
dencies), but it offers so much more. So much so that I have a full series just on how
to use CMake and all of its basic and advanced features, as well as how you would
use it for developing an actual CFD code. This can be found in the series linked below:

Resource 4.2 Automating CFD solver and library compilation using CMake

The idea of CMake is simple. First, generate a project file that contains all build in-
structions. From it and some potentially user-specified inputs, build instructions for
your operating system and compiler will be generated. CMake then executes these
build instructions to create the executable.

The project file that contains all build instructions is named CMakeLists.txt, and
CMake will always look for this file when it is executed. It is always in the root folder
of your project, and in our case, it has the following content:

1 cmake_minimum_required(VERSION 3.10)
2 project(euler)
3

4 # ensure that the C++ 2017 standard is used
5 set(CMAKE_CXX_STANDARD 17)
6 set(CMAKE_CXX_STANDARD_REQUIRED ON)
7

8 add_executable(euler euler.cpp)

First, we have to define a minimum version of CMake to use. If we try to run it with
a lower version of CMake, it will stop. Version 3.10 is pretty old, and your version of
CMake should be much newer than this.

Then, we give the project a unique identifier, here, euler. Lines 5–6 ensure that the
C++ 2017 standard is enabled, and then, on line 8, we define the executable called
euler, which requires euler.cpp to be generated.

https://cfd.university/learn/automating-cfd-solver-and-library-compilation-using-cmake/
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This is all. From this file, we can create the executable for Windows, Linux, and
macOS. Let’s do that.

First, we generate a build/ folder again. This is essential and must be done with
CMake, but you can give the folder any name you want. Then, we have to go inside
this newly created build/ folder and invoke CMake once using the following com-
mand:

1 cmake .. ‐DCMAKE_BUILD_TYPE=Release

This will run CMake and look in the parent folder (..) for a file called CMakeLists.txt
(which we have just looked at above). CMake will then check what your operating
system is, which compiler should be used, and so on. All of that information gets
stored in a file called CMakeCache.txt.

The additional flag ‐DCMAKE_BUILD_TYPE=Release informs CMake that we want to
turn on compiler optimisations. This is somewhat equivalent to using the /O2 on Win-
dows or the ‐O2 flag on Linux / macOS, though CMake will set a few more compiler
flags.

We can now go ahead and build our project using the following command:
1 cmake ‐‐build . ‐‐config Release

This will generate the executable either within the current build/ folder or within a
sub-folder called Release/. This will depend on your platform, and thus, you will
need to check, though when you run the above command, it will tell you where the
executable was placed in the console (that path will be printed).

If you want to clean up the current folder from all of the generated *.csv files, you
can achieve that using the rm *.csv command. This command works on Windows,
Linux, and macOS.

4.1.3. Running the code
Now that we have a compiled code available, let’s run it to make sure it is working.
Depending on which route you have taken, your executable will be located in one of
two locations. It is going to be in either of the two:

• build/euler.exe (or build/euler on UNIX)
• build/Release/euler.exe (or build/Release/euler on UNIX)

Change into the build/ directory and run the executable. This can be achieved using
one of the following commands:

• ./euler.exe (or ./euler on UNIX)
• ./Release/euler.exe (or ./Release/euler on UNIX)

We want to stay in the build/ folder so that all *.csv files will be generated in this
folder. This will help us with the post-processing, which we will look at in the next
section, where one of the scripts assumes that all solution files are stored in the build/
folder.
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If you managed to get the code compiled and executed, you should see the following
message after running the code:

1 Current time: 2.000e‐01, End time: 2.000e‐01, Current time step: 385
2 Simulation finished

If this is the case, the solver executes correctly, and you are ready to look at the results.
To make your life easier, I have included two shell scripts that will compile and run the
code for you using the steps outlined above. These are called compileAndRun.ps1
for Windows and compileAndRun.sh for Linux and macOS. You can run them inside
your terminal using the following commands:

On Windows: .\compileAndRun.ps1

On Linux and macOS: ./compileAndRun.sh

4.2. Post-processing results with Python, Jupyter note-
book, and plotly

In this section, we will look at how we can post-process the results using Python. If
you are already familiar with Python, this is probably the simplest way to look at the
results. If not, you can open the *.csv files with any other program you like (e.g.
Excel, Matlab), and then process the results. If you do, simply take the last created
*.csv file and use that to post-process your results.

Remember that the structure of the *.csv file is such that all values are comma-
separated, and the first line represents the header (column names), followed by the
columns with the values for each column.

If you want to follow along in this Section, then you will need Python installed on your
system, along with its package manager pip. If you have that, the first thing you will
need to do is install all required dependencies using pip. This can be achieved with
the following command:

1 pip install ‐r requirements.txt

This will install all dependencies listed in the requirements.txt file. This step will
install all required packages system-wide, which isn’t the best choice, and sometimes,
you aren’t even allowed to do so. If that is the case, you want to create a virtual
environment first, which allows you to install all required packages locally. You can do
that using the following command:

1 python ‐m venv euler

Then, depending on your operating system, you can activate the virtual environment
using one of the following commands. On Windows, you have to type:

1 .\euler\Scripts\Activate.ps1

And, on UNIX (Linux or macOS):
1 source euler/bin/activate



4.3. Results and preliminary analysis 67

This will load the virtual environment, and any packages you download and install will
be local to this environment. Once the environment has been activated, you can install
all required packages using the same command as above, i.e.:

pip install ‐r requirements.txt.

Once all packages have been installed (either system-wide or inside your virtual envi-
ronment), we will be ready to post-process the results. There is just one assumption
here: The Python code expects all *.csv files to be located within the build/ direc-
tory. If not, then the code won’t find the solution files generated by the CFD solver.

The post-processing code is written as a Jupyter Notebook. If you have never used
that before, then think of it as a dynamic code execution framework. You can run either
the entire code or just parts of it and then inspect the results as you step through each
block of code.

To launch the Jupyter notebook, run the following command:
1 jupyter notebook eulerPlot.ipynb

This will launch the code within your default browser. Here, you can go to the Run
menu and select Run all Cells. This will go through all the code and execute them.
This will generate two plots.

The first plot is shown in the middle of the notebook and shows the solution at the
end of the simulation. The second plot, shown at the bottom of the notebook, is an
animated version of the entire solution. It has a play and a pause button, allowing you
to animate the solution for each time step.

If you can see the results, then you are ready to move on to the next section and start
investigating the results.

4.3. Results and preliminary analysis
In this section, I want to highlight some of the characteristics of the shock tube problem
and, by extension, the behaviour of the Euler equations. We will see that capturing
shock waves is rather difficult, and even a simple inviscid 1D solver already poses
great challenges for our numerical schemes to overcome.

But before we jump in, let us have a look at the solution that we would expect. This is
shown for the density, velocity, and pressure profile in Figure 4.1.

Think of the shock tube problem as a long cylinder filled with air, where we keep two
separate chambers at different pressures and densities. This is achieved using a thin
sheet of metal in the middle of the cylinder, which separates these states.

Then, at t = 0s, we remove the thin sheet of metal (or pierce it) so that both regions
are brought into contact with one another, where we have discontinuities between the
two separate regions.

As a result, we will form 3 different types of waves which are:

• A rarefaction wave travelling from the initial discontinuity to the left
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Figure 4.1: Expected solution for the density, velocity, and pressure profile for the shock tube
problem at t = 0.2s.

• A shock wave travelling from the initial discontinuity to the right
• A contact discontinuity which is located between the rarefaction and shock wave

We can see that at a time of t = 0.2s, i.e. the solution shown in Figure 4.1, we
have zero velocities at the boundaries (the rarefaction and shock waves have still
not reached the boundaries). We see that the contact discontinuity is present in the
density profile but absent in the pressure profile (which otherwise looks fairly similar).

Thus, we study the expansion of these three separate and characteristic waves in the
shock tube problem, and numerical results are presented in the subsequent sections.

4.3.1. Influence of the numerical schemes
Let’s start with the numerical schemes first. We can choose between the piecewise
constant reconstruction and the MUSCL scheme. Using the MUSCL scheme, we also
have to pick a limiter. We can either pick the minmod, or van Leer limiter, or, switch it
off if we wish.

The results for both the piecewise constant reconstruction as well as the MUSCL re-
construction using both the minmod and van Leer flux limiter are shown in Figure 4.2.

The piecewise constant reconstruction struggles to capture discontinuities, which be-
comes especially noticeable when comparing it against the MUSCL scheme using
either of the two flux limiters. However, the resolution of the discontinuities is also not
that great with the MUSCL scheme, and this is particularly exposed by the contact
discontinuity seen in the density profile.

This is not entirely the fault of the MUSCL scheme alone. The Riemann solver we
use here can also positively (or negatively) affect our solution. We use the simple
Rusanov Riemann solver here, which isn’t great at capturing these discontinuities
with high accuracy.

There is another Riemann solver proposed by Harten, Lax, and van Leer (aptly named
the HLL Riemann solver, based on their names), which is a bit more sophisticated
compared to the Rusanov Riemann solver, although it also struggles to capture this
discontinuity. An extension proposed by Toro and co-workers recovers this contact



4.3. Results and preliminary analysis 69

(a) Piecewise constant reconstruction

(b) MUSCL scheme using the minmod flux limiter

(c) MUSCL scheme using the van Leer flux limiter

Figure 4.2: Solution for the shock tube problem using the piecewise constant reconstruction and the
MUSCL scheme with 101 grid points at t = 0.2s.

discontinuity, and their Riemann solver is known as the HLLC Riemann solver.

There is another point worth noting, which isn’t clear from Figure 4.2. We are only
looking at results that converged and not the ones that diverged. If you try to run the
MUSCL scheme without a limiter (which we can set up in our solver), you won’t get
results (in fact, the simulation will diverge).

This is because the MUSCL scheme is second order, which is a problem. Godunov
(do you remember him from Section 2.3.1.1?) worked on this problem quite a bit and
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postulated the following, which is nowadays known as Godunov’s theorem:

Linear numerical schemes for solving partial differential equations (PDE’s), having the
property of not generating new extrema (monotone scheme), can be at most first-order
accurate.

To translate that into plain English, it means that if you have any numerical scheme
where the order is greater than one, we will introduce oscillations (new extrema) into
our solutions. These oscillations will become stronger in magnitude until they diverge
the simulation, and these oscillations are entirely driven by discontinuities in our solu-
tion.

Thus, van Leer introduced the flux limiters into the MUSCL scheme, which made
them stable, even at higher orders, which gave us high-resolution numerical schemes.
Therefore, only results for the minmod and van Leer flux limiter are provided, as only
these converged.

From Figure 4.2, we can also see that 101 points for the domain are likely not sufficient
to resolve the flow accurately, at least not with the current numerical schemes and
Riemann solver setup. Thus, let us explore what happens when we use more points
for the solution.

4.3.2. Influence of the grid size
If we want to enhance the accuracy of our solution, one option is to increase the
number of cells in our domain. As we addmore andmore cells, the cell sizes decrease,
and thus, we have more cells near discontinuities to resolve them better.

In Figure 4.3, we can see results for the piecewise constant reconstruction using 201,
401, 801, and 1601 grid points. We see that despite increasing the number of cells,
the accuracy is only modestly improving.

While we do have an overall good resolution at 1601 cells, the contact discontinuity is
still not resolved well. We could, of course, continue to increase the number of cells,
but this would just unnecessarily increase the computational cost.

Instead, let’s look at the results for the MUSCL scheme using the van Leer flux limiter.
These are shown in Figure 4.4. Comparing these results with those obtained with the
piecewise constant reconstruction, we see a drastic improvement in resolution.

At 201 grid points using the MUSCL scheme, the results look qualitatively as good
as the piecewise constant reconstruction at 1601 grid points. However, the contact
discontinuity has still not been resolved well enough. But, as we increase the number
of cells, the contact discontinuity will eventually be resolved much better. Looking at
the 801 and 1601 grid points, we see that the contact discontinuity is finally resolved
well with a sharp gradient.

Thus, we can conclude the following: The piecewise constant reconstruction is a first-
order method, while we are using a second-order MUSCL scheme here. The higher
the order, the better the resolution on the same grid. Or, we can use a coarser grid
using a higher-order scheme compared to a lower-order scheme for the same level of
accuracy and thus save computational costs.
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(a) Piecewise constant reconstruction using 201 grid points

(b) Piecewise constant reconstruction using 401 grid points

(c) Piecewise constant reconstruction using 801 grid points

(d) Piecewise constant reconstruction using 1601 grid points

Figure 4.3: Solution for the shock tube problem using the piecewise constant reconstruction with 201,
401, 801, and 1601 grid points at t = 0.2s.
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(a) MUSCL scheme with the van Leer flux limiter using 201 grid points

(b) MUSCL scheme with the van Leer flux limiter using 401 grid points

(c) MUSCL scheme with the van Leer flux limiter using 801 grid points

(d) MUSCL scheme with the van Leer flux limiter using 1601 grid points

Figure 4.4: Solution for the shock tube problem using the MUSCL scheme with the van Leer flux
limiter with 201, 401, 801, and 1601 grid points at t = 0.2s.
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To achieve higher-order accuracy, however, a flux limiter is mandatory to stabilise
the numerical approximation in space. Using a flux limiter transforms a higher-order
method (second-order and above) into a high-resolution method. Charles Hirsch
writes in his book ”Numerical Computations of Internal & External Flows”:

It has to be said that the development of high-resolution schemes is one of the most
remarkable achievements of the history of CFD.

Indeed, CFDwithout high-resolution schemes is unthinkable, like pizzawithout cheese.
We really are lucky that so many before us have devoted so much time to developing
schemes that can be used to predict strong non-linear phenomena, such as shock
waves so that we can use them to predict the behaviour of real-world flows.

The grid resolution is not the only thing we can play with. Another important factor is
the time step. This is investigated in the next section.

4.3.3. Influence of the time step
Table 4.1: Influence of the CFL number (time step) on the convergence of the MUSCL scheme with

van Leer limiter on a grid with 101 points.

CFL Iterations Converged? Oscillation?

0.10 430 Yes No
0.25 172 Yes No
0.50 83 Yes No
0.57 91 Yes Yes
0.58 47 No Yes

As alluded to in the previous section, the time step plays a crucial role in our simulation
as well. If we set it too low, we will wait for quite a long time to get results. If we set it
too high, then our simulation may diverge.

We discussed in Section 3.3.1 that to have a stable time step, we first need to express
it in some form of non-dimensional unit, which we do using the CFL number. Then,
depending on our numerical scheme in time (e.g. here, the first-order Euler scheme),
we can derive the max CFL condition.

While we could go through the stability analysis, this would be a bit over the top here
and, for pretty much all convection-dominated problems (i.e. the Euler or Navier-
Stokes equations) using a Reynolds number larger than one and an explicit time in-
tegration scheme (which we do), the upper limit is typically at CFL = 1. If diffusion
dominates, this typically reduces to CFL = 0.5. Thus, if in doubt, set CFLmax = 0.5,
and you should always be able to compute a stable time step from Eq.(3.4).

This is the theory, but in reality, we are making somany additional approximations, sim-
plifications, and modifications that we rarely achieve divergence at CFL = 1. Some-
times, it is slightly above that limit (typically low Reynolds number, laminar, incom-
pressible flows) or below for flows involving strong non-linear behaviour (turbulence
or shock formation).
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Table 4.1 shows the influence of the CFL number on the convergence of the MUSCL
scheme with the van Leer limiter on a grid with 101 points. We start with CFL = 0.1
and go all the way up to CFL = 0.58, at which point divergence is detected.

As we increase the CFL number, we see that the number of iterations required to
march the solution until the required end time of t = 0.2s decreases. This makes
sense. From Eq.(3.5), we see that the time step is proportional to the CFL number,
and if the CFL number increases, then so does the time step.

A higher value of ∆t leads to fewer time steps required to reach the simulation end
time; however, at CFL = 0.5, we see this trend reversing. If we increase the CFL
number further beyond this point, we see that we require more time steps than before.
This is because we are now introducing some non-physical oscillations which desta-
bilise the simulation, leading to smaller time steps and thus more time steps in total
required to reach the simulation end time.

Let’s examine the solution and see how the CFL number influences the results. This
is shown in Figure 4.5. Look at the density profile and see how the result changes
from a CFL number of CFL = 0.1, i.e. Figure 4.5a to a CFL number of CFL = 0.5,
i.e. Figure 4.5c.

We can see that the solution is smeared, and the discontinuities are less well resolved.
A larger CFL number brings about numerical diffusion in time, as it damps out any
sharp features such as discontinuities. Thus, a lower CFL number may result in better
accuracy at the cost of longer simulation times.

But now observe Figure 4.5d, where we have used CFL = 0.57. We saw before that,
in this case, the number of steps required to reach the simulation end time is higher
than in the CFL = 0.5 case. We can also see the oscillations (non-physical results)
that appear in the simulations.

We have a few options to get rid of these oscillations. The simplest would be to imple-
ment further flux limiters and see if they can handle the oscillations better. Otherwise,
a better Riemann solver may be another option. We could also switch from MUSCL to
WENO schemes, another family of schemes commonly used to treat discontinuities
(discussed further in Section 5.3). Finally, the time integration could be made more
robust by using a higher-order numerical scheme in time, potentially with some TVD
properties (e.g. a third-order Runge-Kutta explicit time stepping with TVD properties,
which is commonly used for compressible flows).

There are a few options, but for our current discussion, it is sufficient to realise that we
cannot arbitrarily increase the time step as we want. If we need larger CFL numbers,
we need to switch to an implicit time integration, which is unconditionally stable and
thus allows for arbitrarily large CFL numbers.

4.4. Summary
We have now examined the influence of the numerical schemes, the grid size, and
the time step. We saw that they all influence the simulation, and certain combinations
can lead to divergence.
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(a) MUSCL scheme with the van Leer flux limiter at CFL = 0.1

(b) MUSCL scheme with the van Leer flux limiter at CFL = 0.25

(c) MUSCL scheme with the van Leer flux limiter at CFL = 0.5

(d) MUSCL scheme with the van Leer flux limiter at CFL = 0.57

Figure 4.5: Solution for the shock tube problem using the MUSCL scheme with the van Leer flux
limiter for different CFL values
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I would encourage you to play around with the settings and observe how the results
change. This is the best way to get an intuition for how our numerical schemes and
settings influence results.

Youmight consider implementing additional numerical schemes or extending the solver
to 2D or 3D. Use this solver as a playground to experiment and observe how different
concepts are implemented. This experience will make it much easier for you to write
your own solver in the future.

The following section will offer ideas for using the solver, allowing you to experiment
further and test additional concepts.

But this is it. We have now seen how to take the theory discussed in Chapter 2 and
implement that into code in Chapter 3. In the current chapter, we have discussed
results that we have obtained with our CFD solver to gain some intuition for what the
settings and schemes do to our results.
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Where to go from here

You have made it to the end. If you followed all the steps and could understand and
implement the code (or, instead, follow the implementation and understand it), then
you have come a long way.

Sure, there will be concepts that will still feel a bit strange, and you may not have
grasped everything in the first read. This is normal. CFD isn’t an easy field to get into,
as there are so many separate aspects we need to master.

However, I hope that you got the gist of how to write a simple 1D, inviscid CFD solver.
While it is a simplified solver, do not mistake that for a simple solver. The steps we
had to go through to get to a solution were anything but simple.

Every commercial and open-source CFD solver that wants to solve the compressible
form of the Navier-Stokes equation has to implement high-resolution schemes (e.g.
MUSCL scheme), flux limiters, and a Riemann solver.

The additional terms in the Navier-Stokes equations just make our discretised equa-
tion longer, and the addition of 3D instead of 1D also just makes the programming
effort more significant, but at its core, you will find the same topics discussed in this
guide in every other more mature CFD solver.

Thus, feel free to consult some of the references sprinkled in within this guide or per-
form your own research and read up on concepts you feel require some more reading
to understand fully.

In the meantime, I want to give you some ideas you could try to do next. The following
sections propose some extensions you could do that vary in the degree of complexity.
You may not be comfortable with all of them, but there should be something here for
everyone.

5.1. Implementing additional flux limiters
This is probably the most straightforward extension for you to work on. Initially, I had
quite a few more flux limiters implemented, but I decided to go for two basic options
so that you have some room to explore additional ones.
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As a reminder, you can find a good overview of common flux limiters on Wikipedia.
Pick one and then implement it within theMUSCL scheme as discussed in Section 2.3.1.2.

You will then also need to extend the enum on flux limiters as discussed in Sec-
tion 3.1.4. This will allow you to pick your newly implemented flux limiter.

Try the Superbee, Sweby, and perhaps the van Albada flux limiter. They are straight-
forward to implement and should be a good place to start. Note that some flux limiters
are not TVD or 2nd order. This isn’t necessarily a problem. In fact, implement one of
those as well and see how they stack up against other flux limiters that are TVD and
second-order.

5.2. Implementing additional Riemann solvers
We have looked at the simplest of all Riemann solvers: the Rusanov Riemann solver.
This is a great way to get started, but there are much better versions available.

Whenever I write a CFD solver and need a decent selection of Riemann solvers, I
start with the Rusanov Riemann solver and then implement the HLL Riemann solver
next. Once that is working, extending it to the HLLC Riemann solver isn’t that much
of a problem.

The HLL and HLLC Riemann solvers are great starting points for capturing more of
the flow with greater accuracy. We spent quite a bit of time in Chapter 4 to look at
the contact discontinuity, and the HLLC Riemann solver was specifically designed to
capture this with greater accuracy (the C in HLLC stands for contact, i.e. capturing
the contact discontinuity).

The best place to learn about both of them is the book by Toro, who also introduced the
HLLC Riemann solver. If you have access to Springer’s ebook collection (e.g. through
your university), then you can access the chapter on the HLL and HLLC Riemann
solver here.

If you don’t have access, then you can find an overview of the HLL Riemann solver
here, and for the HLLC Riemann solver here. However, the above-linked book is really
the place you want to start to get some more understanding, including a sensible
summary that walks you through step by step on how to implement both Riemann
solvers.

5.3. Implementing WENO schemes
When we were looking at our numerical schemes to approximate the values at the
faces, i.e. at i ± 1/2, then we talked about the piecewise constant reconstruction
(Section 2.3.1.1) and the MUSCL scheme (Section 2.3.1.2).

However, we saw that the piecewise constant reconstruction really needs a lot of
points to capture discontinuities well when compared to the MUSCL scheme (i.e. see
Figure 4.3 and Figure 4.4).

I briefly mentioned that there is a second type of scheme available, which is called
the WENO (Weighted Essentially Non-Oscillatory) scheme. These involve a bit more

https://en.wikipedia.org/wiki/Flux_limiter#Limiter_functions
https://link.springer.com/chapter/10.1007/978-3-662-03490-3_10
https://www.ita.uni-heidelberg.de/~dullemond/lectures/num_fluid_2011/Chapter_7.pdf
https://robertcaddy.com/posts/HLLC-Algorithm/


5.3. Implementing WENO schemes 79

work to implement, but they are really powerful in capturing discontinuities, even at
lower grid resolutions.

Probably the best description at a very accessible level is provided over at Scholarpe-
dia, and you could go through this section and try to implement the scheme.

You’ll need to implement Eq.(1–3) first in the article above. Then, you have to compute
the smoothness indicator βj as given in Eq.(8), which allows you to compute the non-
linear weights as given by Eq.(9). With that, you are in a position to obtain the face
reconstructed values at i± 1/2 as shown in Eq.(6).

The article is nicely written, but given that the equations are not presented in the order
in which they are implemented, I thought of including it here in case you want to try it.

Additionally, you will need to use a lower-order approximation (e.g. piecewise con-
stant) near the boundary faces, similar to what we have done in the MUSCL scheme
(e.g. see lines 2–8 in Listing 11).

In the case of the MUSCL scheme, we only needed to do that for the cells directly
attached to the boundary. However, in the case of the WENO scheme discussed
above, we need the first and last two cells to use a lower-order approximation.

1 // use lower‐order scheme near boundaries
2 for (int variable = 0; variable < 3; ++variable) {
3 Ufaces[0][FACE::WEST][variable] = U[0][variable];
4 Ufaces[0][FACE::EAST][variable] = U[0][variable];
5 Ufaces[1][FACE::WEST][variable] = U[1][variable];
6 Ufaces[1][FACE::EAST][variable] = U[1][variable];
7

8 Ufaces[parameters.numberOfPoints ‐ 2][FACE::WEST][variable] = U[
parameters.numberOfPoints ‐ 2][variable];

9 Ufaces[parameters.numberOfPoints ‐ 2][FACE::EAST][variable] = U[
parameters.numberOfPoints ‐ 2][variable];

10 Ufaces[parameters.numberOfPoints ‐ 1][FACE::WEST][variable] = U[
parameters.numberOfPoints ‐ 1][variable];

11 Ufaces[parameters.numberOfPoints ‐ 1][FACE::EAST][variable] = U[
parameters.numberOfPoints ‐ 1][variable];

12 }
13

14 // use high‐resolution WENO scheme on interior nodes / cells
15 for (int i = 2; i < parameters.numberOfPoints ‐ 2; i++) {
16 // Implement Eq.(1‐3) (polynomial reconstruction at i+(1/2))
17 // Implement Eq.(8) (smoothness indicator)
18 // Implement Eq.(9) (non‐linear weights)
19 // Implement Eq.(6) (face reconstruction values at i+(1/2))
20 }

Listing 18: Boilerplate code to start the WENO scheme implementation.

Tomake things easier, I have provided you with some boilerplate code which you could
use to get started. This is provided in Listing 18.

Look at lines 3–11. Here, we use the piecewise constant reconstruction for the first
and last two cells to obtain the face values at i±1/2. Then, on line 15, we loop over all

http://www.scholarpedia.org/article/WENO_methods
http://www.scholarpedia.org/article/WENO_methods
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cells starting with index i = 2 and going to i < parameters.numberOfPoints ‐ 2.

As a reminder, when we implemented the MUSCL scheme, we were looping from
i = 1 to i < parameters.numberOfPoints ‐ 1.

5.4. Extending the solver to 2D
Finally, to make things more interesting, we could also extend our solver from 1D to
2D (or even 3D). It isn’t much more complicated than the 1D case, and, in fact, we
only need to add one more dimension to our conserved variable vectorU and the flux
vector F(mathbfU).

We also need to add an additional loop over the y direction, i.e. whenever we loop
over the internal cells in the x direction, we also need to loop over the internal cells in
the y direction. For example, when we have:

1 for (int variable = 0; variable < 3; ++variable) {
2 for (int i = 0; i < parameters.numberOfPoints ; i++) {
3 // do something, e.g. reconstruct values at i+1/2
4 Ufaces[i][FACE::WEST][variable] = U[i][variable];
5 }
6 }

We need to replace that with a 2D version of the loop, i.e.:
1 for (int variable = 0; variable < 3; ++variable) {
2 for (int i = 0; i < parameters.numberOfPoints; i++) {
3 for (int j = 0; j < parameters.numberOfPoints; j++) {
4 // do something, e.g. reconstruct values at i+1/2
5 Ufaces[i][j][FACE::WEST][variable] = U[i][j][variable];
6 }
7 }
8 }

Notice how I have also added the additional index j to access information in the con-
served variable vector U.

Now, you just have to go through the code and make extensions wherever you need.
The governing equations, by the way, can be derived in a similar way as we did in
Section 2.2.3, where we obtained the 1D system from the general 3D system (i.e. we
take the 3D system and remove any derivative that contains either the z direction or
the w velocity component).

Granted, making our solver 2D (or 3D) is probably the most involved, as we need to
make changes at many different points in the code, but it is also not that difficult as
long as we think which parts need to be modified and which can remain the same.

Once we have figured that out, it is usually a case of allocating memory for an addi-
tional index and looping over an additional loop in the y direction.

If this feels to big of a project, then that’s fine. However, once you get 2D or even 3D
work, you can investigate some really interesting problems, such as the double Mach
reflection problem.
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Full source code for the Euler CFD

solver

This section contains the entire content of the euler.cpp file for quick reference. All
code sections are discussed in detail in Chapter 3.

1 #include <iostream>
2 #include <iomanip>
3 #include <vector>
4 #include <array>
5 #include <cmath>
6 #include <fstream>
7 #include <sstream>
8 #include <string>
9

10 // global enums for easy variable access
11 enum SCHEME { CONSTANT = 0, MUSCL};
12 enum LIMITER { NONE = 0, MINMOD, VANLEER};
13 enum FACE {WEST = 0, EAST};
14

15 // definition for case parameter structure to hold case‐specific settings
16 struct caseParameters {
17 int numberOfPoints;
18 double gamma;
19 double domainLength;
20 double endTime;
21 double CFL;
22 double dx;
23 double time;
24 int timeStep;
25 };
26

27 int main() {
28

29 /* ‐‐‐‐‐‐‐‐‐‐ Pre‐processing ‐‐‐‐‐‐‐‐‐‐ */
30

31 // Read parameters
32 auto numericalScheme = SCHEME::MUSCL;
33 auto limiter = LIMITER::VANLEER;
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34 caseParameters parameters;
35

36 parameters.numberOfPoints = 101;
37 parameters.gamma = 1.4;
38 parameters.domainLength = 1.0;
39 parameters.endTime = 0.2;
40 parameters.CFL = 0.58;
41

42 parameters.dx = parameters.domainLength / (parameters.numberOfPoints ‐
1);

43 parameters.time = 0.0;
44 parameters.timeStep = 0;
45

46 // Allocate memory
47 std::vector<double> x(parameters.numberOfPoints);
48 std::vector<std::array<double, 3>> U(parameters.numberOfPoints);
49 std::vector<std::array<std::array<double, 3>, 2>> Ufaces(parameters.

numberOfPoints);
50 std::vector<std::array<std::array<double, 3>, 2>> Ffaces(parameters.

numberOfPoints);
51

52 // Create/read mesh
53 for (int i = 0; i < parameters.numberOfPoints; i++) {
54 x[i] = i * parameters.dx;
55 }
56

57 // Initialise solution
58 double rho = 0.0;
59 double u = 0.0;
60 double p = 0.0;
61

62 for (int i = 0; i < parameters.numberOfPoints; i++) {
63 if (x[i] <= 0.5) {
64 rho = 1.0;
65 u = 0.0;
66 p = 1.0;
67 } else {
68 rho = 0.125;
69 u = 0.0;
70 p = 0.1;
71 }
72

73 U[i][0] = rho;
74 U[i][1] = rho * u;
75 U[i][2] = p / (parameters.gamma ‐ 1.0) + 0.5 * rho * std::pow(u, 2);
76 }
77

78 /* ‐‐‐‐‐‐‐‐‐‐ Solving ‐‐‐‐‐‐‐‐‐‐ */
79 while (parameters.time < parameters.endTime) {
80

81 // Preparing solution update (store old solution and calculate
stable timestep)

82 auto UOld = U;
83

84 // calculate stable time step
85 double speedMax = 0.0;
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86 for (int i = 0; i < parameters.numberOfPoints; i++) {
87 // we need the primitive variables first to compute the wave speed

(based on speed of sound and local velocity)
88 auto rho = U[i][0];
89 auto u = U[i][1] / rho;
90 auto p = (parameters.gamma ‐ 1.0) * (U[i][2] ‐ 0.5 * rho * std::

pow(u, 2));
91

92 // calculate wave speed for each cell
93 double speedOfSound = std::sqrt(parameters.gamma * p / rho);
94 if (speedOfSound + std::fabs(u) > speedMax)
95 speedMax = speedOfSound + std::fabs(u);
96 }
97 double dt = (parameters.CFL * parameters.dx) / speedMax;
98

99 // Solve equations
100

101 // compute/interpolate conserved variables at faces
102 if (numericalScheme == SCHEME::CONSTANT) {
103 for (int i = 0; i < parameters.numberOfPoints; i++) {
104 for (int variable = 0; variable < 3; ++variable) {
105 Ufaces[i][FACE::WEST][variable] = U[i][variable];
106 Ufaces[i][FACE::EAST][variable] = U[i][variable];
107 }
108 }
109 } else if (numericalScheme == SCHEME::MUSCL) {
110 // use lower‐order scheme near boundaries
111 for (int variable = 0; variable < 3; ++variable) {
112 Ufaces[0][FACE::WEST][variable] = U[0][variable];
113 Ufaces[0][FACE::EAST][variable] = U[0][variable];
114

115 Ufaces[parameters.numberOfPoints ‐ 1][FACE::WEST][variable] = U[
parameters.numberOfPoints ‐ 1][variable];

116 Ufaces[parameters.numberOfPoints ‐ 1][FACE::EAST][variable] = U[
parameters.numberOfPoints ‐ 1][variable];

117 }
118

119 // use high‐resolution MUSCL scheme on interior nodes / cells
120 for (int i = 1; i < parameters.numberOfPoints ‐ 1; i++) {
121 for (int variable = 0; variable < 3; ++variable) {
122 auto du_i_plus_half = U[i + 1][variable] ‐ U[i][variable];
123 auto du_i_minus_half = U[i][variable] ‐ U[i ‐ 1][variable];
124

125 double rL = du_i_minus_half / (du_i_plus_half + 1e‐8);
126 double rR = du_i_plus_half / (du_i_minus_half + 1e‐8);
127

128 double psiL = 1.0;
129 double psiR = 1.0;
130

131 // apply limiter to make scheme TVD (total variation
diminishing)

132 if (limiter == LIMITER::MINMOD) {
133 psiL = std::max(0.0, std::min(1.0, rL));
134 psiR = std::max(0.0, std::min(1.0, rR));
135 } else if (limiter == LIMITER::VANLEER) {
136 psiL = (rL + std::fabs(rL)) / (1.0 + std::fabs(rL));
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137 psiR = (rR + std::fabs(rR)) / (1.0 + std::fabs(rR));
138 }
139

140 Ufaces[i][FACE::WEST][variable] = U[i][variable]
141 ‐ 0.5 * psiL * du_i_plus_half;
142 Ufaces[i][FACE::EAST][variable] = U[i][variable]
143 + 0.5 * psiR * du_i_minus_half;
144 }
145 }
146 }
147

148 // compute fluxes at faces
149 std::array<double, 3> fluxL, fluxR;
150 for (int i=1; i < parameters.numberOfPoints ‐ 1; i++) {
151 for (int face = FACE::WEST; face <= FACE::EAST; ++face) {
152 int indexOffset = 0;
153 if (face == FACE::WEST) indexOffset = 0;
154 else if (face == FACE::EAST) indexOffset = 1;
155

156 auto rhoL = Ufaces[i ‐ 1 + indexOffset][FACE::EAST][0];
157 auto uL = Ufaces[i ‐ 1 + indexOffset][FACE::EAST][1] / rhoL;
158 auto EL = Ufaces[i ‐ 1 + indexOffset][FACE::EAST][2];
159 auto pL = (parameters.gamma ‐ 1.0) * (EL ‐ 0.5 * rhoL * std::pow

(uL, 2));
160 auto aL = std::sqrt(parameters.gamma * pL / rhoL);
161

162 auto rhoR = Ufaces[i + indexOffset][FACE::WEST][0];
163 auto uR = Ufaces[i + indexOffset][FACE::WEST][1] / rhoR;
164 auto ER = Ufaces[i + indexOffset][FACE::WEST][2];
165 auto pR = (parameters.gamma ‐ 1.0) * (ER ‐ 0.5 * rhoR * std::pow

(uR, 2));
166 auto aR = std::sqrt(parameters.gamma * pR / rhoR);
167

168 fluxL[0] = rhoL * uL;
169 fluxL[1] = pL + rhoL * std::pow(uL, 2);
170 fluxL[2] = uL * (EL + pL);
171

172 fluxR[0] = rhoR * uR;
173 fluxR[1] = pR + rhoR * std::pow(uR, 2);
174 fluxR[2] = uR * (ER + pR);
175

176 // Rusanov Riemann solver
177 auto speedMax = std::max(std::fabs(uL) + aL, std::fabs(uR) + aR)

;
178 for (int variable = 0; variable < 3; ++variable) {
179 const auto &qL = Ufaces[i ‐ 1 + indexOffset][FACE::EAST][

variable];
180 const auto &qR = Ufaces[i + indexOffset][FACE::WEST][variable

];
181 const auto &fL = fluxL[variable];
182 const auto &fR = fluxR[variable];
183 Ffaces[i][face][variable] = 0.5 * (fL + fR) ‐ speedMax * (qR ‐

qL);
184 }
185 }
186 }
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187

188 // calculate updated solution
189 for (int i=1; i < parameters.numberOfPoints ‐ 1; i++)
190 for (int j=0; j<3; j++) {
191 const auto &dF = Ffaces[i][FACE::EAST][j] ‐ Ffaces[i][FACE::WEST

][j];
192 U[i][j] = UOld[i][j] ‐ (dt / parameters.dx) * dF;
193 }
194

195 // Update boundary conditions
196 auto rhoL = 1.0;
197 auto uL = 0.0;
198

199 auto rhoR = 0.125;
200 auto uR = 0.0;
201

202 U[0][0] = U[1][0];
203 U[0][1] = rhoL * uL;
204 U[0][2] = U[1][2];
205

206 U[parameters.numberOfPoints ‐ 1][0] = U[parameters.numberOfPoints ‐
2][0];

207 U[parameters.numberOfPoints ‐ 1][1] = rhoR * uR;
208 U[parameters.numberOfPoints ‐ 1][2] = U[parameters.numberOfPoints ‐

2][2];
209

210 // Output solution to csv file for plotting
211 std::ofstream outputFile;
212

213 // convert time step and points into 6 digits string with leading
zeros

214 std::ostringstream timeStepTemp, pointsTemp;
215

216 timeStepTemp << std::setfill('0') << std::setw(6);
217 timeStepTemp << parameters.timeStep;
218 auto timeStep = timeStepTemp.str();
219

220 pointsTemp << std::setfill('0') << std::setw(6);
221 pointsTemp << parameters.numberOfPoints;
222 auto points = pointsTemp.str();
223

224 outputFile.open("solution_" + points + "_" + timeStep + ".csv");
225 outputFile << "x,rho,u,p" << std::endl;
226 for (int i = 0; i < parameters.numberOfPoints; i++) {
227 auto rho = U[i][0];
228 auto u = U[i][1] / rho;
229 auto p = (parameters.gamma ‐ 1.0) * (U[i][2] ‐ 0.5 * rho * std::

pow(u, 2));
230 outputFile << x[i] << "," << rho << "," << u << "," << p << std::

endl;
231 }
232 outputFile.close();
233

234 // output current time step information to screen
235 std::cout << "Current time: " << std::scientific << std::setw(10) <<

std::setprecision(3) << parameters.time;
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236 std::cout << ", End time: " << std::scientific << std::setw(10) <<
std::setprecision(3) << parameters.endTime;

237 std::cout << ", Current time step: " << std::fixed << std::setw(7)
<< parameters.timeStep;

238 std::cout << "\r";
239

240 // Increment solution time and time step
241 parameters.time += dt;
242 parameters.timeStep++;
243 }
244

245 std::cout << "\nSimulation finished" << std::endl;
246

247 return 0;
248 }
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